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Executive Summary 
Virtual machines are used by IT departments to provide better hardware utilization and to 
isolate users and programs from each other. We explore how configuration changes affect 
the throughput of virtual machines hosted on ESX Server during CPU intensive 
workloads. In particular we explore how Hyper-Threading, Virtual SMP, and the amount 
of RAM allocated affect throughput.  

Hyper-Threading is Intel’s implementation of simultaneous multithreading technology 
and was introduced with the Xeon processor. Virtual SMP allows ESX Server to host 
virtual machines with two virtual processors. 
Our tests were run on two Dell 6650 quad processor 2.20 GHz Xeon servers with 16GB 
of RAM, a Gigabit Ethernet NIC, and a 1.3 TB SAN. Our benchmarks were run on Linux 
kernel 2.4.21-15.ELsmp and compiled by gcc 3.2.3 unless specifically stated otherwise.  

We used SPEC’s cpu2000 benchmark suite to obtain our results. No attempt was made to 
optimize the benchmarks for the virtual machines and default settings were used in all 
cases. Unused virtual machines were suspended before each test. Each benchmark was 
run five times to ensure that the results were consistent and repeatable. We used the 
RDTSC instruction to time the benchmarks. 
The table below summarizes our benchmark test cases. 

Test Cases Description 
Scalability 
Hyper-Threading, 1 CPU This compares throughput of one CPU virtual machines with 

Hyper-Threading both enabled and disabled. 
Hyper-Threading, 2 CPUs This compares the throughput of two CPU virtual machines 

with Hyper-Threading both enabled and disabled. 
1 CPU vs. 2 CPUs This compares the throughput of one and two CPU virtual 

machines. 
Resource Allocation 
Memory Subsystem This tracks throughput as the amount of RAM allocated to a 

virtual machine increases. 
Table 1 - Summary of benchmark test cases. 

Hyper-Threading significantly increases throughput for CPU intensive workloads. When 
twelve virtual CPUs were benchmarked and Hyper-Threading was enabled the 
throughput of single CPU virtual machines increased 21% and the throughput of two 



 

CPU virtual machines increased 23% compared to when Hyper-Threading was disabled. 
Since Hyper-Threading is most effective with large numbers of virtual machines a host 
that is Hyper-Threading enabled should have at least two virtual CPUs in aggregate for 
every physical CPU. Using fewer virtual CPUs reduces the benefits of Hyper-Threading.  

Virtual machines should only be allocated a single virtual CPU. From empirical results it 
appears that Virtual SMP lowers throughput by 10%. Virtual SMP should not be used 
unless the problem domain requires it.  
Allocating excessive memory did not increase the performance of virtual machines. 
When a benchmark isolated the memory subsystem and was run on a virtual machine 
running Linux allocating too much memory lowered throughput between 6%-12%. In 
contrast allocating excessive memory to virtual machines running Windows XP SP2 did 
not affect performance for any benchmark we ran. Virtual machines should not be 
allocated more resources than they are expected to use for their current task because it 
will not increase performance and there may be hidden costs for managing increased 
amounts of resources.  
In summary: 

• Single CPU virtual machines scale better than virtual machines using Virtual 
SMP. 

• Hyper-Threading increases throughput if there are a large number of virtual 
CPUs, but makes no difference if the number of virtual CPUs is less than or equal 
to the number of physical CPUs.  

• Do not allocate excessive resources to virtual machines. Additional resources may 
hurt performance.  

 



 

Abstract 

We present a summary of our evaluation of VMWare ESX Server 2.5.2. In particular we 
confirm and work around known timing issues with guest operating systems running on 
ESX server. Our work validates and adds to the work of other groups modeling the 
behavior of ESX Server during CPU intensive workloads by exploring in more detail the 
effects of Hyper-Threading and the overhead of Virtual SMP. We report and measure a 
previously unknown performance penalty for allocating too much RAM in virtual 
machines with Linux as the guest operating system. This paper also describes the testbed 
we used to manage and run our tests including a virtualization test management system 
we developed to run the tests we performed. We describe timing issues that affect 
performance testing on ESX Server and a method for measuring runtimes that gives 
accurate results. 



 

Introduction 

A virtual machine monitor (VMM) is a piece of software that provides an environment 
that attempts to closely simulate physical hardware. A virtual machine (VM) is the 
environment created by a VMM. With the exception of timing dependencies any program 
run inside a VM should exhibit the same behavior as the program would exhibit if it were 
run on physical hardware. Some reasons why virtualization is used by corporate IT 
departments include:  

• Increased hardware utilization. 
• Increased hardware scalability. 
• Better hardware fault containment. 
• Better isolation of users, programs, and physical resources. 
• Allowing the transparent migration of a server between physical hosts. 

In this paper we explore how configuration changes affect the throughput of virtual 
machines during CPU intensive workloads. In particular we explore how Hyper-
Threading, Virtual SMP, and the amount of RAM allocated affect throughput.  

In our work we will use VMware ESX Server 2.5.2 as the VMM. 



 

Background 
Hyper-Threading is Intel’s implementation of simultaneous multithreading technology 
and was first introduced with Intel’s Xeon processor. Hyper-Threading allows the 
processor to use execution units that are normally unused (such was when the processor 
is waiting because of a cache miss).  The actual performance improvement is application 
dependent (Intel).  
ESX Server is a native VM system. A native VM system is one where the VMM is the 
only software on the machine that runs in the highest privilege level of the host machine. 
In contrast a VMM that is installed on a host that runs an operating system independent 
of the VMM is called a hosted VM system. If the VMM on a hosted system runs in a 
privilege level below the host’s operating system it is called a user-mode hosted VM 
system. VMware Server and Microsoft Virtual PC are two examples of user-mode hosted 
VM systems. VMware claims that since ESX Server runs directly on the hardware I/O 
performance is significantly higher on ESX Server than on user-mode hosted VM 
systems (Waldspurger 2002; Smith, 2005). 

VMware runs unmodified guest operating systems. Paravirtulization achieves higher 
performance than traditional VM systems by presenting an interface that is similar, but 
not identical to the underlying hardware. The changes are intended to make virtualization 
more efficient, but they also require that guest operating systems be rewritten to only use 
the new interface. Xen and Denali are two well-known paravirtaulization systems 
(Barham 2003; Whitaker 2002).  

Virtual SMP is an extension of ESX Server created by VMware that allows ESX Server 
to create and host virtual machines that are allocated two processors.  If Virtual SMP is 
installed ESX Server allows guest virtual machines to be allocated two virtual CPUs. 



 

Related Work 

VMware published a white paper that explores the behavior of ESX Server under loads 
similar to what we consider here (VMware 2005A). Results from the white paper include: 

• Guaranteed CPU resource minimums and maximums work as advertised. 
• Page sharing has negligible CPU overhead and can result in significant memory 

savings.  
• Hyper-Threading increases throughput of single CPU virtual machines under 

CPU intensive workloads. 
• A native operating system has throughput approximately 12%-14% higher than 

the same operating system running inside a virtual machine hosted by ESX 
Server.  

 
VMware and a group from IBM reported on the suitability of using ESX Server to host 
IBM’s WebSphere application server (High-Volume Web Site 2004). The group’s results 
include the following: 

• ESX Server 2 effectively allocates CPU shares according to priorities set by users. 
• The overhead of ESX Server compared to an operating system running directly on 

hardware is between 12%-15%. 

 



 

Hardware and System Setup 

Hardware 

The machines we used to run most of our tests were two Dell 6650 quad processor 
2.20GHz Xeon servers with 16GB of RAM, a Broadcom NetXtreme BCM5700 Gigabit 
Ethernet NIC, and an EMC CLARiiON CX 300 storage area network with over 1.3 TB of 
storage. The virtualization testbed is shown in Figure 1. A diagram showing the 
interconnections is shown in Figure 2. 

 

Figure 1 – The Enterprise Computing Laboratory Virtualization Testbed 



 

A small number of tests were run on a ProLiant BL25p with two Opteron Processors 250 
which ran at 2406 MHz. This machine had 16GB of RAM.  

 

Figure 2 – The environment the majority of our tests were run involved two Dell 6650’s connected to 
a SAN and controlled through a Dell 1750. 

Operating Systems 

We ran our tests with various guest operating systems, but the results presented in this 
paper used Linux kernel 2.4.21-15.ELsmp (hereafter referred to as Linux) and compiled 
using gcc 3.2.3 unless specifically stated otherwise. This operating system was selected 
because it is supported by Virtual SMP allowing us to allocate one or two CPUs to a 
single virtual machine.  

Benchmark Methodology 

The performance issues we explore in this paper focus on CPU resources and so the 
benchmarks are CPU intensive. We present here results from using the following 
benchmark suites:  

• FreeBench 
• Spec cpu2000 



 

FreeBench was used to help gather initial results due to its short runtimes. Spec cpu2000 
was used to gather most of the results presented here (FreeBench; Henning 2000).   

No attempt was made to optimize the benchmarks for the virtual machines and default 
settings were used in all cases. Unused virtual machines were suspended before each test 
so that they wouldn’t affect CPU usage. Each benchmark was run five times to ensure 
that the results from the benchmarks were consistent and repeatable. The reported results 
are the average of the test runs. 

More detailed information about the benchmarks we used can be found in Appendix A. 

Timing Methodology 

 

Figure 3 – Comparison of time reported by virtual machines after a benchmark run compared with 
the actual amount of time that had passed. The guest operating system was Linux running the 
FreeBench benchmark.  

Initial benchmark runs demonstrated abnormal results under certain conditions. When a 
small number of virtual machines were running the results of the benchmarks were 
consistent with timers external to the virtual machines. For large numbers of virtual 
machines, however, the times reported by the virtual machines did not agree with our 
external timers. Figure 3 illustrates the difference between reported time and wall-clock 
time for a benchmark run using Linux. Notice that reported time and wall-clock time are 
nearly identical until 20 virtual machines are running simultaneously and when more than 



 

20 virtual machines are running simultaneously the time reported by the virtual machines 
stops increasing.  

This is a known issue with some operating systems running on ESX Server (VMware 
2005B). The affected operating systems are not processing their timing interrupts as fast 
as ESX server sends them causing those interrupts to be lost. VMware provides a set of 
tools that periodically synchronizes the guest operating systems time with the host 
machine. Rerunning the benchmarks with this tool showed the same pattern, as the tool 
did not synchronize the time sufficiently frequently to affect our benchmarks.  

We timed our benchmarks using a method introduced in a VMware white paper 
(VMware 2005A). We used the RDTSC instruction to time workloads. RDTSC is a 
benchmarking instruction that returns the value of a 64-bit register (the TSC) that is 
incremented every clock cycle. We also used the RDTSC instruction and modified the 
virtual machines to use the host machine’s TSC so that our benchmark results would be 
independent of timing issues on all operating systems.  

The TSC was read at the beginning and end of each benchmark run. The difference 
between the two values is used to determine how long the benchmark ran.  

We use CPU throughput of the system to report our results. We have the virtual machines 
perform a workload and throughput is measured as the number of times the workload is 
completed by the system for a given time period. 

Benchmark Test Cases 
The test cases covered in this paper are summarized in the table below. 

Test Cases Description 
Scalability 
Hyper-Threading, 1 CPU This compares throughput of one CPU virtual machines with 

Hyper-Threading both enabled and disabled. 
Hyper-Threading, 2 CPU This compares the throughput of two CPU virtual machines 

with Hyper-Threading both enabled and disabled. 
1 CPU vs. 2 CPUs This compares the throughput of one and two CPU virtual 

machines. 
Resource Allocation 
Memory Subsystem This tracks throughput as the amount of RAM allocated to a 

virtual machine increases. 
Table 2 - Summary of benchmark test cases. 

The scalability tests measure throughput as the number of active virtual machines 
increases. The resource allocation test measures throughput as the amount of resources 
(memory) allocated changes.  



 

Testing Framework 

We managed our tests using a distributed application created using Ruby on Rails. Figure 
4 shows a screenshot of the test management software. 

 

Figure 4 – Screenshot of the program we used to manage our tests. The virtual machines contact the 
Rails application to get test parameters and to report results. 

Tests are setup by entering the test parameters into the application. The parameters 
include information about the environment (such as how much RAM is allocated) and the 
test itself (such as which benchmark to run).  
A script is run on each virtual machine involved in the test. The virtual machine contacts 
the test management system and gets the information about which benchmarks to run. 
Our test management system greatly reduced the time required to setup and collect the 
results from our tests. Starting each test by hand was prone to error because the 
commands to start the tests are long and must be typed in perfectly for each virtual 
machine involved in the test. Collecting results by hand was error prone and time 
consuming. When large numbers of virtual machines were involved in the test collecting 
the output files and entering them into a spreadsheet often took more than thirty minutes 



 

for each test. With our test management system each test took only five minutes to setup 
and collect the results regardless of the number of virtual machines involved in the test.  

 

Figure 5 - The results of a test are along with the IP number of the virtual machine to identify which 
virtual machine submitted the results for tests involving many virtual machines. 

The results are reported back to the application at the end of the test run as shown in 
Figure 5. The IP address of the reporting virtual machine is used to uniquely identify 
which virtual machine submitted the results for tests that use multiple virtual machines.  

The test management application groups the results based on the type of test that was run. 
The results were then transferred to a spreadsheet for further processing.  

 



 

CPU Intensive Workloads  

This section reports our results for CPU intensive workloads. First we compare the 
throughput of single CPU virtual machines with Hyper-Threading enabled and disabled. 
Next we compare the throughput of two CPU virtual machines with Hyper-Threading 
enabled and disabled. Finally we compare the throughput of single CPU and two CPU 
virtual machines. The results shown in the graphs and tables below are for the gzip 
benchmark in the cpu2000 suite. We only present the results for gzip here because the 
other results are similar. 

The gzip benchmark is based on the popular data compression program gzip (GNU zip). 
It uses Lempel-Ziv coding (LZ77) as its compression algorithm. All work is done in 
memory to help isolate the CPU and memory subsystem. 

The single CPU virtual machines were allocated 512MB of RAM and the two CPU 
virtual machines were allocated 1024MB of RAM. All other virtual machine resources 
were left at the default values. Results are reported relative to the throughput of a single 
virtual machine running with Hyper-Threading disabled. The hardware used to run these 
tests had four CPUs. 

Hyper-Threading Comparison With One Virtual CPU 

 

Figure 6 – CPU throughput of virtual machines running Linux and allocated a single CPU with 
Hyper-Threading disabled for the gzip benchmark. 



 

Figure 6 shows the CPU throughput of virtual machines with a single virtual CPU when 
Hyper-Threading is disabled. With Hyper-Threading disabled throughput increased 
linearly until four virtual CPUs were running simultaneously. When more than four 
virtual CPUs were running at the same time throughput decreased marginally. From four 
virtual CPUs to twelve virtual CPUs throughput decreased 2%. Since each virtual 
machine is allocated a single virtual CPU the number of virtual machines is equal to the 
number of virtual CPUs. 

 

Figure 7 – CPU throughput of virtual machines running Linux and allocated a single virtual CPU 
with Hyper-Threading enabled for the gzip benchmark. 

Figure 7 shows the CPU throughput of virtual machines with a single CPU when Hyper-
Threading is enabled. With Hyper-Threading enabled throughput increased linearly from 
one to four and from four to eight virtual CPUs. The increase from four to eight virtual 
CPUs was more modest than the initial increase. When more than eight virtual CPUs are 
running simultaneously throughput increases marginally. Throughput increased 17% 
from four virtual CPUs to twelve virtual CPUs. Since each virtual machine is allocated a 
single virtual CPU the number of virtual machines is equal to the number of virtual 
CPUs. 



 

 

Figure 8 – CPU throughput comparison of virtual machines running Linux and allocated a single 
virtual CPU with Hyper-Threading enabled and disabled for the gzip benchmark.  

Figure 8 compares the CPU throughputs of virtual machines allocated a single virtual 
CPU when Hyper-Threading is enabled and disabled. Notice that from one virtual CPU to 
four virtual CPUs Hyper-Threading has no impact on throughput. When more than four 
virtual CPUs are running simultaneously Hyper-Threading enabled virtual machines have 
higher throughput than Hyper-Threading disabled virtual machines. The throughput of 
Hyper-Threading enabled virtual machines is 21% higher than the throughput of virtual 
machines without Hyper-Threading when twelve virtual CPUs are running 
simultaneously. Since each virtual machine is allocated a single virtual CPU the number 
of virtual machines is equal to the number of virtual CPUs. 

Virtual CPUs   HT Enabled   HT Disabled   Ratio  
1  1.00   1.00   1.00  
2  2.00   2.01   1.00  
4  3.94   3.91   1.01  
6  4.22   3.93   1.07  
8  4.55   3.84   1.18  

10  4.57   3.79   1.21  
12  4.64   3.83   1.21  

Table 3 – Normalized results for Linux running gzip with single CPU virtual machines running Linux 
for the gzip benchmark.  



 

The throughput increases linearly to four virtual CPUs because the hardware used to run 
these tests had four CPUs. The throughput at four virtual CPUs was not quite four times 
the throughput of one virtual CPU because of the overhead of running ESX Server. For 
large numbers of virtual machines Hyper-Threading enabled has significantly higher 
throughput for CPU intensive workloads. When Hyper-Threading is enabled having two 
single CPU virtual machines for every physical CPU in the host machine maximizes 
throughput. When less virtual machines are running on the host some of the potential 
benefits of Hyper-Threading are lost. 

Hyper-Threading Comparison With Two Virtual CPUs 

 

Figure 9 - CPU throughput of virtual machines running Linux and allocated two virtual CPUs with 
Hyper-Threading disabled for the gzip benchmark. 

Figure 9 shows CPU throughput of virtual machines with two virtual CPUs when Hyper-
Threading is disabled. With Hyper-Threading is disabled throughput increased linearly 
until four virtual CPUs were running simultaneously. When more than four virtual CPUs 
were running at the same time throughput decreased slightly. From four virtual CPUs to 
twelve virtual CPUs throughput decreased 4%. Since each virtual machine was allocated 
two virtual CPUs the number of virtual machines involved in a test was half the number 
of virtual CPUs used in that test. 



 

 

Figure 10 - CPU throughput of virtual machines running Linux and allocated two virtual CPUs with 
Hyper-Threading enabled for the gzip benchmark. 

Figure 10 shows the CPU throughput of virtual machines allocated two virtual CPUs 
when Hyper-Threading is enabled. With Hyper-Threading enabled throughput doubled 
from two to four virtual CPUs and throughput continued to increase from four to eight 
virtual CPUs. After eight virtual CPUs were running throughput did not change 
significantly. Throughput increased 17% from four virtual CPUs to twelve virtual CPUs. 
Since each virtual machine was allocated two virtual CPUs the number of virtual 
machines involved in a test was half the number of virtual CPUs used in that test. 



 

 

Figure 11 - CPU throughput comparison of virtual machines running Linux and allocated a single 
virtual CPU with Hyper-Threading enabled and disabled for the gzip benchmark.  

Figure 11 compares the CPU throughputs of virtual machines allocated two virtual CPUs 
when Hyper-Threading is enabled and disabled. Notice that when two virtual CPUs or 
four virtual CPUs are running simultaneously Hyper-Threading has no impact on 
throughput. When more than four virtual CPUs are running simultaneously Hyper-
Threading enabled has higher throughput than Hyper-Threading disabled. The throughput 
of Hyper-Threading enabled virtual machines is 23% higher than the throughput of 
virtual machines without Hyper-Threading when twelve virtual CPUs are running 
simultaneously. Since each virtual machine was allocated two virtual CPUs the number 
of virtual machines involved in a test was half the number of virtual CPUs used in that 
test. 

Virtual CPUs   HT Enabled   HT Disabled   Ratio  

2  1.83   1.83   1.00  

4  3.60   3.58   1.01  

6  3.81   3.36   1.13  

8  4.27   3.41   1.25  

10  4.18   3.34   1.25  

12  4.22   3.44   1.23  



 

Table 4 - Normalized results for Linux running gzip with each virtual machine allocated 1024MB of 
RAM and two virtual CPUs. 

The throughput nearly doubles from two virtual CPUs to four virtual CPUs because the 
hardware used to run these tests had four CPUs. The throughput at four virtual CPUs was 
not quite double the throughput of two virtual CPUs because of the overhead of running 
ESX Server. For large numbers of virtual machines Hyper-Threading enabled has 
significantly higher throughput for CPU intensive workloads. When Hyper-Threading is 
enabled having one virtual machine with two CPUs for every physical CPU in the host 
machine maximizes throughput. When less virtual machines are running on the host some 
of the potential benefits of Hyper-Threading are lost.  

Virtual SMP 

 

Figure 12 – CPU throughput comparison of single CPU virtual machines and two CPU virtual 
machines with Linux running gzip.  

Figure 12 compares the CPU throughputs of single CPU virtual machines and virtual 
machines allocated two virtual CPUs when Hyper-Threading is disabled. As the number 
of virtual CPUs running simultaneously increase throughput is consistently higher for 
single CPU virtual machines than for two CPU virtual machines. The throughput 
difference ranges between 9%-17% where most values are between 10%-13%.  The 
number of single CPU virtual machines involved in a test is equal to the number of 
virtual CPUs. The number of two CPU virtual machines involved in a test is half of the 
number of virtual CPUs. 



 

Virtual CPUs Single CPU Two CPUs Ratio 
1  1.00  -- -- 
2  2.01   1.83  1.10 
4  3.91   3.58  1.09 
6  3.93   3.36  1.17 
8  3.84   3.41  1.13 

10  3.79   3.34  1.13 
12  3.83   3.44  1.11 

Table 5 - Normalized results for CPU throughput of single CPU virtual machines and two CPU 
virtual machines when Hyper-Threading is disabled with Linux as the guest OS running gzip.  

 

 
Figure 13 - Comparison of one and two CPU virtual machines when Hyper-Threading is enabled. 
Each single CPU virtual machine was allocated 512MB of RAM and each two CPU virtual machine 
was allocated 1024MB of RAM. The guest operating system was Linux and the benchmark was gzip. 

Figure 13 compares the throughput of virtual machines allocated a single virtual CPU and 
virtual machines allocated two virtual CPUs when Hyper-Threading is enabled. As the 
number of virtual CPUs running simultaneously increase the gap between the throughput 
for one CPU virtual machines and two CPU virtual machines goes from 7% to 11%.  

Virtual CPUs Single CPU Two CPUs Ratio 
1  1.00  -- -- 
2  2.00   1.83  1.09 
4  3.94   3.60  1.10 
6  4.22   3.81  1.11 
8  4.55   4.27  1.07 



 

10  4.57   4.18  1.09 
12  4.64   4.22  1.10 

Table 6 - Normalized results for CPU throughput for single CPU virtual machines and two CPU 
virtual machines when Hyper-Threading is enabled and Linux is the guest OS running gzip. 

Single CPU virtual machines scale better than virtual machines using Virtual SMP. 
Virtual SMP should not be used unless the problem domain requires the virtual machine 
to have two processors.  

Conclusions from CPU Intensive Workloads 
Hyper-Threading significantly increases throughput for CPU intensive workloads. When 
twelve virtual CPUs were benchmarked and Hyper-Threading was enabled the 
throughput of single CPU virtual machines increased 21% and the throughput of two 
CPU virtual machines increased 23% compared to when Hyper-Threading was disabled. 
Since Hyper-Threading is most effective with large numbers of virtual machines a host 
that is Hyper-Threading enabled should have at least two virtual CPUs for every physical 
CPU. Using fewer virtual CPUs reduces the benefits of Hyper-Threading.  

Virtual CPUs Improvement for Single 
CPU Virtual Machines 

Improvement for Two 
CPU Virtual Machines 

1  1.00  -- 
2  1.00   1.00  
4  1.01   1.01  
6  1.07   1.13  
8  1.18   1.25  
10  1.21   1.25  
12  1.21   1.23  

Table 7 – The improvement of CPU throughput when Hyper-Threading is enabled compared to 
when Hyper-Threading is disabled with Linux as the guest operating system running the gzip 
benchmark. 

Virtual machines should only be allocated one CPU. From empirical results it appears 
that Virtual SMP lowers throughput by 10%. Virtual SMP should not be used unless the 
problem domain requires it.  

Virtual CPUs Improvement With 
Hyper-Threading 
Disabled 

Improvement With 
Hyper-Threading 
Enabled 

1 -- -- 
2 1.10 1.09 
4 1.09 1.10 
6 1.17 1.11 
8 1.13 1.07 
10 1.13 1.09 
12 1.11 1.10 

Table 8 - The ratio of CPU throughput of single CPU virtual machines compared to the CPU 
throughput of virtual machines with two virtual CPUs. 



 

Memory 

This section reports our results for the memory subsystem workloads. We ran the SPEC 
cpu2000 benchmarks on virtual machines hosting Linux and Windows XP SP2 to 
compare throughput as a function of the amount of memory allocated to the virtual 
machine. Hyper-Threading had negligible effect on these tests. The virtual machines used 
in these tests were only allocated one virtual CPU. 

Linux Memory Subsystem Test 

 

Figure 14 – Comparison of throughput of virtual machines running Linux as a function of RAM.  

Figure 14 shows the CPU throughput as a function of RAM of the three benchmarks in 
the cpu2000 suite that best isolate the memory subsystem with Linux as the guest 
operating system. Notice that they had noticeable drops in throughput as the amount of 
RAM allocated to the virtual machine increased. The throughput of the three benchmarks 
that are described as exercising the memory subsystem in the cpu2000 suite dropped 
between 5%-11%.   

RAM gzip gcc bzip2 
128 0.411 0.680 0.704 
256 0.963 0.997 0.955 
384 0.994 0.997 0.995 
512 1.000 1.000 0.996 
640 0.996 0.998 1.000 



 

1024 0.951 0.929 0.967 
2048 0.918 0.887 0.954 
3072 0.926 0.889 0.953 

Table 9 – Normalized results for Linux as a function of RAM. The benchmarks shown here are the 
ones from the integer component of the cpu2000 suite that best isolate the memory subsystem. 

 
Figure 15 - Comparison of throughput of virtual machines running Linux as a function of RAM.  

The other benchmarks in the cpu2000 suite are shown in figure 15. As before the guest 
operating system is Linux. The benchmarks that do not isolate the memory subsystem 
only have a mild drop in performance. The biggest performance drop reported among the 
group is 4% with the average only being 2%.  

RAM vpr Mcf crafty parser eon perlbmk gap vortex twolf 
128 0.982 1.000 0.995 1.000 1.000 0.916 0.033 0.989 0.973 
256 0.993 0.989 1.000 1.000 0.998 1.000 0.983 1.000 0.973 
384 0.992 0.982 0.994 0.992 0.996 1.000 0.994 0.999 1.000 
512 1.000 0.989 0.993 0.995 0.998 0.984 1.000 0.993 0.975 
640 0.995 0.988 0.994 0.992 1.000 0.996 0.998 0.996 0.968 

1024 0.990 0.999 0.992 0.993 1.000 0.972 0.987 0.974 0.991 
2048 0.988 0.983 0.975 0.994 0.991 0.961 0.977 0.967 0.976 
3072 0.985 0.966 0.972 0.994 0.994 0.961 0.979 0.964 0.975 

Table 10 - Normalized results for Linux as a function of RAM. The benchmarks shown here are the 
ones from the integer component of the cpu2000 suite that best isolate the memory subsystem. 



 

Windows XP Memory Subsystem Test 

 
Figure 16 - Comparison of throughput of virtual machines running Windows XP SP2 as a function of 
RAM.  

Figure 16 shows the CPU throughput of three benchmarks in the cpu2000 suite which 
best isolate the memory subsystem on Windows XP SP2. In contrast to virtual machines 
running Linux, virtual machines running Windows XP SP2 suffered no lose in throughput 
as the amount of RAM allocated to the virtual machines increased for benchmarks that 
isolate the memory subsystem.   

RAM gzip gcc bzip2 
128 0.476 0.669 0.731 
256 0.929 0.984 0.937 
384 0.983 0.985 0.988 
512 0.984 0.982 0.987 
640 0.985 0.972 0.977 

1024 0.985 0.979 0.989 
2048 0.992 0.988 0.992 
3072 1.000 1.000 1.000 

Table 11 - Normalized results for Windows XP Service Pack 2 as a function of RAM. The 
benchmarks shown here are the ones from the integer component of the cpu2000 suite that best 
isolate the memory subsystem. 

 



 

 
Figure 17 - Comparison of throughput of virtual machines running Linux as a function of RAM.  

The rest of the benchmarks in the cpu2000 suite with Windows XP SP2 as the guest 
operating system are shown in Figure 17. Like the benchmarks that isolate the memory 
subsystem, none of the other benchmarks in the cpu2000 suite suffered a drop in 
throughput as the amount of RAM allocated to the virtual machines increased.  
 

RAM vpr mcf crafty parser eon perlbmk gap vortex twolf 
128 0.984 0.966 0.985 0.985 0.987 0.937 0.049 0.966 0.988 
256 0.991 0.995 0.987 0.993 0.992 0.982 0.929 0.988 0.988 
384 1.000 1.000 1.000 1.000 1.000 0.990 0.995 0.996 0.995 
512 0.992 1.000 0.998 1.000 1.000 0.994 1.000 0.994 1.000 
640 0.989 0.991 0.989 0.991 0.991 0.985 0.992 0.988 0.988 

1024 0.986 0.988 0.988 0.990 0.989 0.983 0.990 0.987 0.995 
2048 0.991 0.989 0.989 0.990 0.989 0.986 0.991 0.987 0.994 
3072 1.000 0.999 0.995 1.000 0.998 1.000 1.000 1.000 0.995 

Table 12 - Normalized results for Windows XP SP2 as a function of RAM. The benchmarks shown 
here are the ones from the integer component of the cpu2000 suite that best isolate the memory 
subsystem. 

Allocating excessive memory did not increase the performance of virtual machines. 
When the benchmark isolated the memory subsystem and was run on a virtual machine 
running Linux allocating too much memory lowered throughput between 6%-11%. In 
contrast allocating excessive amounts of memory to virtual machines running Windows 
XP SP2 did not affect performance for any benchmark we ran. Virtual machines should 
not be allocated more resources than they are expected to use for their current task 



 

because it will not increase performance and there may be hidden costs for managing 
increased amounts of resources.  



 

Conclusions 

Hyper-Threading significantly increases throughput for CPU intensive workloads. When 
twelve virtual CPUs were benchmarked and Hyper-Threading was enabled the 
throughput of single CPU virtual machines increased 21% and the throughput of two 
CPU virtual machines increased 23% compared to when Hyper-Threading was disabled. 
Since Hyper-Threading is most effective with large numbers of virtual machines a host 
that is Hyper-Threading enabled should have at least two virtual CPUs in aggregate for 
every physical CPU. Using fewer virtual CPUs reduces the benefits of Hyper-Threading.  

Virtual machines should only be allocated one CPU. From empirical results it appears 
that Virtual SMP lowers throughput by 10%. Virtual SMP should not be used unless the 
problem domain requires it.  
Allocating excessive amounts of memory did not increase the performance of virtual 
machines. When the benchmark isolated the memory subsystem and was run on a virtual 
machine running Linux allocating too much memory lowered throughput between 6%-
12%. In contrast allocating excessive amounts of memory to virtual machines running 
Windows XP SP2 did not affect performance for any benchmark we ran. Virtual 
machines should not be allocated more resources than they are expected to use for their 
current task because it will not increase performance and there may be hidden costs for 
managing increased amounts of resources.  
In summary: 

• Single CPU guest machines scale better than guest machines using virtual SMP. 
• Hyper-Threading increases throughput if there are a large number of virtual 

CPUs, but makes no difference if the number of virtual CPUs is less than or equal 
to the number of physical CPUs.  

• Do not allocate excessive resources to virtual machines. The additional resources 
may hurt performance.  
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Appendix A: Benchmarks 

FreeBench 

Overview 

FreeBench is an open-source benchmark. It is totally free and it works on UNIX variants 
and Windows systems. The FreeBench project tries to address three issues: 

• Openness 
• Good balance 
• Platform independence 

Openness is achieved by the benchmark being open-source. Platform independence is 
somewhat achieved because the benchmark will run without modification on most 
Windows and Linux systems.  

FreeBench consists of four integer programs and three floating point programs. The 
programs are a good mix of CPU intensive and memory intensive programs. The integer 
programs are: Analyzer, FourInARow, Mason, and pCompress2. The floating point 
programs are: PiFFT, DistRay, and Neural. 

Analyzer (Integer) 

The program was made to analyze memory traces for data dependence. This program is 
mainly limited by memory system performance, but that can be hidden by large caches, 
smart compilers, and out-of-order processors. 

FourInARow (Integer) 

This program plays the game “four in a row” with itself and it is memory limited by the 
memory system.  

Mason (Integer) 

This program solves a puzzle and is limited by clock frequency. 

pCompress2 (Integer) 

This program compresses a file in three stages: Burrows Wheeler blocksorting, run length 
encoding, and arithmetic coding. The program is memory intensive, but is also dependent 
on the efficiency of the C library used by the compiler. 



 

PiFFT (Floating Point) 

This program calculates PI to four million decimal points. It is limited by the efficiency 
of floating point calculations and memory intensive. 

DistRay (Floating Point) 

This program is a ray tracer using random ray distribution. Most of the time of this 
program is spent in recursive loops do floating-point arithmetic so this program should be 
CPU bound. 

Neural (Floating Point) 

This program trains a neural network to do character recognition. It is memory intensive 
so having quick memory accesses is important for good performance on this benchmark. 

SPEC cpu2000 

Overview 

This is the current gold standard by which other CPU benchmarks are compared. The 
Standard Performance Evaluation Corporation (SPEC) has a long history of creating 
quality benchmarks. The current version of SPEC’s CPU benchmark uses only programs 
that were developed from real user applications and can be used to measure the 
performance of the processor, memory and compiler on the tested system. 

The CPU2000 benchmark contains two suites and a total of 26 programs. All of our tests 
used the integer suite (as opposed to the floating point suite) mainly because of the time 
required to run the tests. 

The programs in the integer suite are: 164.gzip, 175.vpr, 176.gcc, 181.mcf, 186.crafty, 
197.parser, 252.eon, 253.perlbmk, 254.gap, 255.vortex, 256.bzip2, 300.twolf. 

164.gzip 

This program is the popular data compression program gzip (GNU zip). It uses Lempel-
Ziv coding (LZ77) as its compression algorithm. All work is done in memory to help 
isolate the CPU and memory subsystem. 

175.vpr (Versatile Place and Route) 

This program performs placement and routing in Field-Programmable Gate Arrays. It 
starts with random initial positions for the gate arrays and then tries to improve on those 
positions through small perturbations.  



 

176.gcc 

This benchmark uses gcc Version 2.7.2.2 to create assembly code files for a Motorola 
88100. The inlining heuristics have been altered slightly to cause the program to spend 
more time doing analysis of the source code. 

181.mcf 

This program solves a combinatorial optimization problem. Namely, it solves scheduling 
problems for a single-depot vehicle in public mass transportation. The main work of th 
program is integer and pointer arithmetic. 

186.crafty 

This is a high performance Computer Chess program that is designed around 64-bit 
words. It has a significant number of logical operations and is a good program for 
comparing integer/branch prediction/pipe-lining facilities of a processor. 

197.parser 

This is a parser of English grammar that uses link grammar, an original theory of English 
syntax. The program creates a syntactic structure which links pairs of words when given 
a sentence. 

252.eon 

This program is a probabilistic ray tracer based on Kajiya’s 1986 SIGGRAPH conference 
paper. It sends a number of 3D lines (rays) into a 3D polygonal model. This program has 
similar computational demands compared to a traditional deterministic ray tracer but with 
less memory coherence. 

253.perlbmk 

This program is a cut-down version of Perl V5.005_03, but with most OS-specific 
features removed. For the workload perlbmk runs several scripts that do various tasks 
such as converting email to HTML and finding perfect number. 

254.gap (Groups, Algorithms, and Programming) 

This program is a group theory interpreter. It implements a language and library designed 
mostly for computing in groups. 



 

255.vortex 

This program is a single-user object-oriented database transaction benchmark which 
exercises a system kernel coded in integer C. This program is a derivative of a full 
OODBMS that has been customized to conform to SPEC CINT2000 guidelines. 

256.bzip2 

This program is based on Julian Seward’s bzip2 version 0.1. The only difference is that 
this program performs all compression and decompression in memory to help isolate the 
CPU and memory subsystem. 

300.twolf 

This program is for determining the placement and global connections for groups of 
transistors needed for creating the lithography artwork needed for the production of 
microchips. This version of the program has been modified to capture the flavor of many 
implementations of simulating annealing. Most execution time is spent in the inner loop 
calculations and so the program traverses memory often creating cache misses. 

 

 

 


