
Using Reputation to Augment Explicit Authorization

Phillip J. Windley Ph.D., Devlin Daley, Bryant Cutler, and Kevin Tew
Dept. of Computer Science, Brigham Young University

Provo, UT, USA
http://xri.net/=windley, devlin.daley@gmail.com, bryant.cutler@gmail.com,

kevin@tewk.com

ABSTRACT
Online social networks are formed when web applications al-
low users to contribute to an online community. The explo-
sive growth of these social networks taxes the management
capacity of human administrators. The continued health of
an online social network depends upon the identification and
utilization of users who make positive contributions to the
community, but finding these individuals can be difficult. In
addition, these contributing users must be explicitly granted
authority to help maintain and grow these networks.

Automated reputation calculations based on user contri-
butions and behavior can be used as an effective substi-
tute for explicit authorization, giving online social networks
greater flexibility and scalability. In this paper, we exam-
ine the underlying principles of online reputation, introduce
Pythia, a flexible reputation system framework, and demon-
strate the use of reputation calculations to augment explicit
authorization in a web application.

Categories and Subject Descriptors
H.4.3 [Information System Applications]: Communica-
tions Applications; K.4.2 [Computers and Society]: So-
cial Issues; H.4.m [Information System Applications]:
Types of Systems; Decision support

General Terms
Algorithms, Human Factors

Keywords
reputation, identity, framework, blogging

1. INTRODUCTION
Most online interactions are devoid of many of the cues

that people use in the physical world to make judgments
about the character, stability, reliability, etc. of people, sys-
tems, and other entities. Yet these cues are critical to so-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIM’07, November 2, 2007, Fairfax, Virginia, USA.
Copyright 2007 ACM 978-1-59593-889-3/07/0011 ...$5.00.

phisticated interactions and transactions. Online reputation
systems attempt to remedy this situation.

Reputation has been studied in the context of philoso-
phy [12], psychology [3], economics [16], biology [26], and
sociology [27]. Much of that work is informative of how
reputation works in the physical world and can guide our
thinking about reputation online.

Online reputation can be accessed informally or formally.
Informal assessments are made by people from their ex-
perience on the Internet. For example, I may not trust
email I get from the domain hotmail.com because I’ve re-
ceived substantial Spam from addresses in the domain in
the past. Formal systems collect and process online infor-
mation about specific identifiers in an attempt to calculate
reputation scores in a more systematic manner.

Computational models of reputation are quite recent[23],
yet diverse strategies have been employed to meet specific
needs. In Reputations Systems: Facilitating Trust in Inter-
net Interactions,[21], Resnick et al. define a reputation sys-
tem as a system that “collects, distributes, and aggregates
feedback about participants’ past behavior.”

The primary domains where computational reputation has
been explored are in artificial intelligence, peer-to-peer net-
working, and electronic commerce. A number of systems
have been devised to provide reputation information for com-
mercial Web sites. [8] Most of these systems have limited
scope and are built for a single context. [19] They are effec-
tive in their specific domain, but lack generality.

Recent advances in user-centric identity systems such as
CardSpace and OpenID provide a firm foundation for the
establishment of general-purpose, online reputation systems
[5, 20], which depend upon generalized identity systems for
correlation of user actions. In many situations where explicit
authorization is either impossible or infeasible, or even in sit-
uations where explicit authorization is currently in use, re-
placing or augmenting human-mediated authorization with
calculated reputations scores can make an application more
flexible and scalable.

This paper first presents a set of core principles that we
believe should govern the operation of reputation systems.
We detail the design of Pythia a generalized framework for
creating reputation systems. We use Pythia to demonstrate
the replacement of explicit authorization for blog comments
with a customized reputation calculation.

2. REPUTATION PRINCIPLES
We believe there are important principles that apply to

reputation systems and should govern their design and op-

eration. Understanding these principles is vital to the suc-
cess of any computational reputation system. We base these
principles on our review of the literature, our own research,
and a Berkman Identity Mashup group discussion. [29]

Reputation is one of the factors upon which trust
is based. [21, 15] People often confuse trust and reputation
in casual conversation. Trust is “the expectation of one per-
son about the actions of others that affects the first person’s
choice when an action must be taken before the actions of
others are known.”[6] Reputation is a basis for trust.

Mui et al. presents a computational model of reputation
that explicitly accounts for trust. [18] Mui’s model uses rep-
utation and the history of encounters between agents to cal-
culate a value representing the expectation that one agent
will reciprocate another agents actions.

Trust is important in many online systems, implicitly or
explicitly[28], but is beyond the scope of this paper. Con-
sequently, we are not concerned with what factors beside
reputation go into trust, how trust is built, or how trust is
exchanged–we are focused solely on reputation.

The expectation of future reciprocity or retalia-
tion creates an incentive for good behavior in the
present. [21] Obviously the party making the reputation
request is doing so in an attempt to gain information that
will guide some action. However, measuring reputation also
affects the behavior of the targets of reputation requests.
Axelrod calls this the “shadow of the future.” [2]

When present actions will affect future judgments that
others make, present behavior will change. For a reputation
system to be effective, recorded feedback on past interactions
must influence the actions of entities in the future. Put
another way, entities must pay some attention to reputations
in the system during their decision making process or it will
cease to induce desired behaviors.

Reputation is personal. Fundamental to the operation
of a reputation system is the notion that agents compute
the reputation for other agents based on certain factors. [18]
While one can control some of the factors upon which rep-
utation is based, one cannot control how those factors are
used by another agent in assessing reputation.

This principle leads to the conclusion that reputation com-
putations should be personalized, so that each agent can
compute a different reputation for another based on the
information that it has available. In Sabater and Sierra’s
words, “we cannot talk about the trust/reputation of an in-
dividual x, we have to talk about the trust/reputation of an
individual x from the point of view of individual y. ”[23]

Reputation is a currency. While you can’t change
reputation directly, reputation can be used as a resource.
For example, Paul Resnick et. al. has shown that a positive
eBay reputation has real economic value. [22]

Reputation is narrative. Put another way, reputation
varies with time. Reputation is dynamic because the factors
that affect it are always changing. One of the problems
with many existing reputation models is that reputation is
treated as uniform across time. [18]

Reputation is based on identity. Reputation isn’t
part of an identity, but is about an identity. Resnick et al.
states that entities in the system must be long lived in order
to ensure a expectation of future interactions. [21] We dis-
tinguish between identity and identifiers. Any given entity
may be known by any number of handles or identifiers.

Linking these identifiers brings together all of the infor-
mation associated with them for subsequent reputation cal-
culations. This linkage reduces or even prevents identity
switching [11] where subjects of bad reputation judgments
simply create a new pseudonym to avoid any negative con-
sequences. By using broad-based identity, with linked iden-
tifiers, as a foundation for the reputation calculation, the
cost of switching is increased.

Reputation is based on verified claims and trans-
actions. Resnick et al. discuss how trust grows in social
situations where by interacting with a person over time, a
history of past interactions is built that characterizes an indi-
vidual’s character, abilities, and disposition. [21] Reputation
systems collect and record feedback concerning interactions.
This information is distributed to entities in the future.

We used these terms in the following ways. Claims are
facts about an identity that can be verified. A claim may
be something as simple as an email address or a URL. A
claim could also be a fact from some online resource. The
number of years that a domain name has been registered,
the ratio of inbound to outbound email from an account, or
the classification of a URL by a content analysis engine are
examples.

Transactions refer to records of interactions between any
two entities. Transactions facilitate both the direct and ob-
served interactions that Sabater and Sierra discuss. [23] Di-
rect interactions are those where you are one of the partic-
ipants. Observed interactions are those that are visible to
non-participants.

Most computational reputation systems take direct inter-
actions into account, only a few allow for observed interac-
tions. Note that observed interactions are not the same as
opinions. Observed interactions are more reliably objective
since they record facts about an interaction, not judgments
about it.

Since reputation is personal, how these factors are used in
determining reputation is individually determined. Individ-
uals may use various evidence in making claims or proposing
a certain rating or endorsement. The penalty for making
false claims or giving false endorsements varies from context
to context.

Lin et al. assert that trust should be based on verifiable
identification of the subject entity, qualification of the entity
to perform the requested service, and the subject entity’s
consistency of performance. [15] Their system, which is built
for peer-to-peer reputation management, bases reputation
on performance metrics from reported by a service’s peers.

Reputation is based on opinion (indirect informa-
tion from other witnesses). [23] A reputation isn’t just
based on facts, but is also based on other’s beliefs about the
subject of the reputation calculation. These beliefs are sig-
naled to others in various ways depending on the context.
Studies of reputation in social networks show the value of
including the opinions of other entities. [27]

As we use the term, opinions are the indirect informa-
tion that other entities may supply about the reputation
subject. These may be ratings, endorsements, or other sub-
jective judgments about an entity or a past transactions in-
volving an entity. Naturally, a certain amount of uncertainty
surrounds this information. Using it involves making more
complicated judgments about its veracity. This makes rep-
utation computations using opinions more costly.

Resnick et al. explain some of the challenges reputation
systems face–many of those challenges are directly related to
the use of opinion. [21] There is a human reluctance to give
negative feedback. In order to mitigate losses and failures,
individuals turn to negotiation and arbitration in place of
giving negative feedback. In some systems, fear of retaliation
leads to an acceptance of mediocrity. Finally, disgust and
desires to avoid further confrontation may cause individuals
to leave bad service in the past and move on without leaving
negative feedback.

Reputation exists in the context of community.
Any given context will have specific factors for what is im-
portant in determining reputation. Community provides a
context for evaluating opinions and indirect information.

Sabater et al. discuss this issue under the heading of “vis-
ibility types” and classify the reputation of an individual
as “global” or “subjective.”[23] Global reputation is a single,
universal value calculated from all the transactional data
available to the system. Subjective reputation is calculated
for pairs of individuals based on their interactions and the
opinions of others.

Global reputation is often insufficient because of a lack of
personalization. But Sabater et al. make the point that sub-
jective systems require strong links between individuals so
that information is shared frequently, providing a large body
of information to serve as the basis reputation decisions.

But the need to collect large amounts of direct interac-
tions between pairs of individuals can be mitigated through
the increased use of observed interactions. That way the
global set of transactions involving the reputation subject is
available to any one individual, greatly increasing the prob-
ability that a sufficiently large set of data will be available
for a reputation calculation.

Reputation exists in a particular context. When we
speak of reputation we say things like “she has a reputation
for ...” The fact that someone is a good plumber doesn’t
mean they will be a reputable babysitter. One of the failings
of many current computational models for reputation is that
they fail to take context into account or are only useful in a
single domain and cannot be repurposed. [18]

There is a natural tradeoff between reputation and
privacy. As noted above, reputation is calculated, in part,
from a record of past interactions. These interactions record
information that individually or in aggregate could threaten
the privacy of the subject. People make the trade-off be-
tween reputation and privacy in the physical world every
day–giving up some privacy to get a credit report, for ex-
ample. Reputation systems should provide users with infor-
mation and choice about this tradeoff.

The quality of a reputation algorithm should be
regularly assessed. As stated, reputation algorithms take
into account a number of factors. The goal of a reputation
algorithm is to process identity transactions into a reputa-
tion that is easy to work with. However, simply returning
a score can lead to false confidence. For example, suppose
that reputation is based on a history of past interactions be-
tween only two parties. If meta data describing transactions
is not available, scores based on this data might inappropri-
ately carry as much weight as other calculations that utilize
more comprehensive transaction data.

In A Reputation and Trust Management Broker Frame-
work for Web Applications, Lin et al. describe a multi-level
hierarchy for calculating reputation in a distributed way in

peer-to-peer networks. [15] Examining Lin’s work leads us
to two conclusions:

1. Reputation response should have an accompanying au-
dit trail of external brokers and services used to calcu-
late the reputation.

2. Confidence measures such as the quantity of feedback
transactions used during a reputation calculation can
be used to evaluate the quality of a reputation frame-
work response.

3. AUGMENTING AUTHORIZATION
Authorization systems are designed to meet conflicting

requirements, including ease-of-use, security, and scalability.
A broad spectrum of authorization systems has resulted;
each system makes trade-offs to achieve specific goals. Some
typical styles of authentication are as follows:

• No authentication Most common in public wikis, these
systems grant privileges even to anonymous, non-auth-
enticated users. This approach scales well, because no
additional work is require besides providing applica-
tion functionality; however, it is suitable only for the
most open environments.

• Authentication as authorization Every authenticated
user is granted full privileges. Many of these systems
make user accounts freely available, but authentication
is retained to allow auditing and sanctions against spe-
cific users. These systems are similarly easy to scale,
because the creation of new accounts is easily auto-
mated.

• Explicit authorization Authenticated users are explic-
itly granted specific privileges, which are typically en-
coded as access control lists (ACL), capabilities, or
roles (RBAC). These systems require human admin-
istrators to manually grant privileges to users, and are
thus not suitable for self-service internet-scale applica-
tions.

We have attempted to bridge the gap between authenti-
cation as authorization and explicit authorization, in a way
that maintains the security properties of explicit authoriza-
tion without suffering from decreased scalability. In many
cases, a reputation-based authorization scheme is a rela-
tively straight-forward automation of a human reputation
calculation. As a result, reputation-based authorization can
retain the security characteristics of human-mediated sys-
tems.

3.1 Benefits
Web applications that replace explicit authorization reap

several important benefits. The first is simplicity. By us-
ing a reputation service to calculate reputations on demand,
application modularity increases in a way similar to aspect-
oriented programming. Authorization is a cross-cutting con-
cern, so it is well-suited to abstraction as a globally-available
service. Calculating reputation on-the-fly also reduces the
data storage overhead of the application, since explicit au-
thorizations are not stored in user records.

Another significant benefit of using generalized reputa-
tion systems is that users can carry their reputations be-
tween contexts. While cross-context reputation applicabil-
ity is a difficult problem we leave for future work, in many

systems external reputation is enough at least to bootstrap
new users into approximately the correct level of authoriza-
tion. Game-theoretic models show [11] that the most effi-
cient strategy for isolated communities is to give newcomers
the minimum possible level of trust. By communicating with
other contexts (by allowing some external reputation data)
services avoid forcing new users to rebuild their reputation
from scratch; this can increase the service’s appeal, espe-
cially to users with high reputation (the users most likely to
make sizable positive contributions to the social network).

Using calculated reputation scores rather then explicit au-
thorization better matches the organic way that large-scale
social web applications change over time. Because the au-
thorization system is automated, it can handle start-and-
stop growth spurts better than a system that relies on teams
of human administrators. Additionally, the importance of
reputation data can be made to gradually decay with time,
so that long-forgotten back-doors or previously authorized
users don’t pose the security risks: only active, contributing
users increase maintain their privileges over time.

3.2 Detrimental aspects
While reputation-based authorization retains many of the

security benefits of explicit authorization, and is far more
scalable, it has some significant problems. The biggest prob-
lem with trusting reputation systems in this way is that
they are inherently inexact, based as they are upon inferring
trends from user actions and feedback. This drawback man-
ifests as false positives (authorization given to undeserving
users) and false negatives (authorization denied to deserv-
ing users) when the defects in the reputation calculations are
unintentional; when users intentionally act in a way that in-
creases their reputation out of proportion to their contribu-
tion to the community, they are“gaming the system.” These
improper authorization decisions, intended and unintended,
weaken security, introduce hard-to-quantify risk, and lead
to complex liability and governance issues.

Even when reputation systems are not themselves the
source of exploits, basing authorization on reputation cal-
culations can be problematic in some domains. Reputation
is simply not applicable in many static environments (i.e.
the relationship between two major corporations) or in reg-
ulated environments (i.e. reputation scores are largely irrel-
evant when determining who should have access to medical
records). In other domains, reputation may not be well-
defined; there may be no consensus about which user actions
are positive and which are negative.

4. PYTHIA
After surveying many of the existing reputation frame-

works employed on the web, we discovered several common
properties. Most reputation systems can be decomposed
into storage of user transactions and algorithms operating
on these transactions to produce a score. Action is then
taken depending on the value of the score.

By building a flexible system that employs these common
traits, these reputation systems and others can more easily
be developed. The goal of Pythia is not to present a novel
computational model for reputation. Rather, our goal is to
provide a framework upon which such computational models
can be built and evaluated.

4.1 Design Philosophy
Beyond the reputation principles discussed previously, we

also created a design philosophy that guided the system ar-
chitecture. The design philosophy is intended to be consis-
tent with the principles espoused in the previous section and
to put stakes in the ground on specific design issues.

Pythia supports multiple computational models for
reputation. There has been much research in the area
of computational reputation models over the last decade.
Sabater et al. gives a review of a dozen such systems. [23]
Our goal in building Pythia was to create a system that sup-
ported many of these models and thus to provide a platform
for future research in computational reputation.

Pythia pragmatically supports computing reputa-
tion from information already available online or in-
formation that is easily gathered. Many of the available
reputation systems are designed to work in a closed or spe-
cialized environment and thus exploit methods of interaction
and observation that are not common interaction idioms on
the Internet. [1, 9, 24, 10, 25, 4] In keeping with our goal
to build a broad-based, general-purpose framework where
reputation calculations can be performed on the emergent
behavior of a large number of participants, Pythia employs
common online identifiers such email addresses and URLs,
uses online resources to verify those claims and generate ad-
ditional facts about them, and captures transactional data
automatically from systems through a Web-based API.

Pythia supports reputation computations for peo-
ple. As mentioned above, our focus has been leveraging
emerging wide-area identity systems as a foundation for rep-
utation. This goal influenced Pythia design choices in a way
that favors reputation calculations for human subjects. The
choice of which identifiers to support and how they’re veri-
fied is an example of such a decision.

In the discussions that follow, we will refer to two groups
of entities with respect to Pythia. The first is the group we
call users. Users are the subjects of a reputation request. As
we’ll see, a reputation request instigates a context-sensitive
reputation calculation. Pythia aggregates information about
users and uses that information in processing reputation re-
quests.

The second group is a subgroup of the users that we call
relying parties. A relying party is a user making a reputation
request about another user. Any user can be a relying party
without any additional provisioning in the system.

Pythia uses aggregation rather than game-theo-
retic or stochastic methods to calculate reputation.
Reputation systems typically use either what Sabater and
Sierra call “cognitive” or “game-theoretical” conceptual mo-
dels. [23] Cognitive methods take into account the “mental
states that lead [one agent] to trust another agent or assign
a reputation.” At present, Pythia does not use stochastic
computation to any significant degree. Rather reputation
scores are based upon the “weight of evidence” represented
by the aggregated information in the database.

Pythia’s use of aggregate data is similar to that of Sierra,
the reference implementation of OpenPrivacy.org’s Reputa-
tion Management System. [13] Sierra uses opinion objects,
which are roughly comparable to the transactions in Pythia
to calculate reputation. “OpenPrivacy’s reputation manage-
ment system can assemble a set of related opinions into a
bias... often, a bias may consist of opinions from multiple
nyms.”[14] Biases are similar to Pythia rule sets (see below).

Users are identified by multiple identifiers. Mul-
tiple identifiers (email addresses, URLs, phone numbers,
etc.) can be associated with a single user. The identi-
fiers are validated through mechanisms like email challenges.
As discussed above, linking these identifiers is an impor-
tant method for increasing the body of information available
about any given user for a reputation calculation. In Pythia
users choose whether to maintain their privacy by keeping
identifiers separate or to increase their reputation by linking
them together.

Reputation is a personalized function of claims,
transactions, and opinions. For our purposes, reputation
can be represented as pseudo-mathematical expression:

Repu = Frp(Iu, Txu,u′ , Ou,u′)

where

Frp is the relying party’s reputation algorithm
u is the user id
u′ is all users
Iu is a vector of verified identifiers and other claims for u

Txu,u′ is a vector of transactions between u and every
other user in the system

Ou,u′ is a vector of opinions about u

Frp is personalized to each relying party. One of our de-
sign goals it to create a system that supports each relying
party creating their own Frp. In practice, each relying party
can define multiple Frp functions and chose which is used at
the time a reputation query is made.

The choice of vectors in the foregoing expression over sets
is meant to indicate that these values are ordered accord-
ing to the time of their collection. Frp can use all of the
information in any given vector or can exclude values from
vectors by employing filters to select appropriate values for
the calculation.

Pythia does not require that reputation be a single num-
ber. It’s possible that the function could return a vector of
values if that was needed. This allows a single reputation
query to return reputation “fitness for purpose” parameters
for multiple contexts.

The vector Iu corresponds to the notion of claims from
the last section. Any number and type of identifiers can be
used in a reputation calculation. In addition, properties of
identifiers, where available, can also be used. For example,
a domain name that has been in use for a longer period of
time may indicate a more trustworthy Web site since the
owner has a large stake in its future viability. An email
address with a ratio of inbound to outbound email messages
significantly less than 1 might indicate an address that is
used to send Spam.

Transactions and opinions we discussed in the last sec-
tion. Since opinions are subject to manipulation “it is far
more complex for trust and reputation models to use [them].
...[W]itnesses manipulate or hide pieces of information for
their own benefit”. [23] Because of this complexity the cur-
rent implementation of Pythia does not use opinions in a
significant way. Future work will incorporate opinions into
the reputation computation.

Transactions are jointly owned by the parties to
the transaction. The exact nature of the transactions in
the system depends on the particular use to which it’s being

put. Transactions always contain an identifier for each party
to the transactions and a timestamp in addition to the facts
pertinent to the transaction as defined by the domain.

Ownership implies that all parties to a transaction can
see it, but not change it. Other users, not party to the
transaction, can use it in a computation, but cannot inspect
the details of the transaction.

Transactions are persistent and immutable. Once
the system has recorded a transaction, it cannot be deleted
by any of the parties to the transaction. A later transaction
may record that it was nullified, but cannot remove it.

Pythia is designed to be user-centric, meaning that users
have control over the reputation data they report and the al-
gorithms they use for reputation calculation. However, one
of our principles of reputation is that it is “your story about
me.” Unlike many facets of identity, users should not be
able to directly modify transaction records; the reputation
data is jointly owned by all the parties involved in the inter-
action, and must be preserved for reputation calculations to
be meaningful.

Transparency. Pythia is designed to favor transparency
wherever possible. Consequently,

• Users can see any information the system knows about
them (e.g. transactions they are party to)

• Users can see any reputation queries about them, what
the results were, and how the result was arrived at.

• As noted, users who are not party to a transaction
cannot see it, but can use it to calculate reputation
about any of the parties to the transaction.

This opens the possibility of information leakage and a
subsequent, unintended loss of privacy. Transaction details
could be “tapped out” through repeated interactions with
the system. We believe that this danger is mitigated by the
benefits that transparency offers.

Online resources should be consulted whenever
possible to garner reputation information. As we’ve
noted, claims about identifiers are validated in various ways.
For example, an email address can be validated by sending a
unique URL to the address that the user clicks on to validate
receipt. URLs can be validated by having the user embed a
unique code in the HTML for the page. [17]

In addition, data stores such as the whois database and
Netcraft.com can be used to gather information about do-
mains and Web sites respectively. These online sources of
information provide facts that can be used as evidence in a
reputation computation. Facts provide a means of assessing
reputation that is based on information that is vouched for
by a third party.

Pythia is centralized. We made this decision primar-
ily for the sake of simplicity. In Lin’s distributed frame-
work [15], for example, a reputation broker first attempts
to answer a user’s reputation requests based on the broker’s
local reputation database. If a broker lacks sufficient local
feedback to make a recommendation it contacts peer brokers
for reputation information. If the peer brokers lack sufficient
feedback to return a reputation, a broker can contact insti-
tutional reputation authorities before resorting to untrusted
sources. Consequently, Lin’s hierarchy of diminishing trust
is complex:

user ->

broker ->

peer brokers ->

reputation authority

In contrast, Pythia’s model is much simpler, having only
users and relying parties both interacting with a central-
ized reputation authority. The Pythia server answers rep-
utation queries based only on the feedback that it has col-
lected and publicly available online information. Pythia’s
collected feedback may be thousands of transactions, ten or
twenty transactions, or none at all. Additionally, central-
ization eases management and significantly improves perfor-
mance in our experimental implementation due to the lack
of multiple network requests cascading from an single query.

As a result of its centralized architecture, Pythia faces all
the same costs as any centralized system including reliabil-
ity concerns associated with a single point of failure, security
and privacy concerns for having a large collection of infor-
mation all in one place, and the scaling issues surrounding
any large system dependent on a database. Similarly, these
issues in Pythia may be addressed by the same techniques
applied to any other large centralized system. We leave for
future work the development of Pythia into a distributed
online reputation system.

4.2 Architecture
The architecture of Pythia is based on the foregoing prin-

ciples and design philosophy. Consequently,

• Pythia is identity system neutral and stores multiple
identifiers for any user; correlation of actions by a user
utilizing multiple identifiers enables more meaningful
reputation calculations.

• Pythia uses a rules engine to allow each relying party to
make customized queries against the transaction store.
Relying parties thus use reputation algorithms tailored
to their own needs.

• Pythia uses context-specific plug-ins to acquire repu-
tation data from other online applications.

Figure 1 shows the high-level block diagram architecture
for Pythia.

4.2.1 Identity Subsystem
Pythia is not an identity system, but is meant to rely on

one or more existing identity systems for authentication and
user IDs. As implemented, Pythia uses OpenID as an au-
thentication mechanism, but other authentication systems
could also be used.

The framework allows users to claim and verify identifiers
from identity systems of all kinds. At present, these iden-
tifiers are limited to email addresses and URLs, but other
types of identifiers could be supported without changing the
underlying system significantly. Email addresses are verified
by sending the email address a challenge message asking the
user to click on a URL to claim the email address in Pythia.

URLs are verified using MicroIDs [Mic06], a standard for
claiming online resources. A MicroID is a secure hash of
an email address and a URI. A MicroID is not used to
prove someone owns a resource (since anyone with control of
the resource could insert the MicroID), but rather to verify
claims to a resource.

Figure 1: Reputation Framework Architecture

Pythia generates a MicroID for any claimed URL based
on a verified email already in the system for that user. The
system instructs the user to embed the MicroID in the page
returned by the resource. In this way, the user proves that
they have the ability to control the content of the resource
identified by the URI.

4.2.2 Reputation Computation Engine
We support each relying party having the ability to calcu-

late the reputation of users in a personalized manner. That
means that reputation calculations are based on information
(claims, transactions, and opinions) specific to the user, us-
ing an computation that is customizable by the relying party.

These computations are specified in a rule language de-
signed to facilitate reputation calculations in Pythia.

Reputation computations are performed using rule-sets,
groupings of rules that are executed to carry out the calcu-
lation. Relying parties can store as many rule sets in the
system as they desire. Each rule in the rule-set comprises
an optional filter, a condition, and an action.

Filters operate on transactions and opinions. Some exam-
ple filters would be transactions where the customer satis-
faction score is greater than 5 or transactions where a blog
comment was rejected.

Conditions operate on information in the system as well
as other reputation information from the Internet. For ex-
ample, we have added an interface to the Akismet API,1 a
system for tracking URLs associated with Spam and a con-
tent classification engine.

Conditions are simple boolean expressions on information
in the system. Permitted boolean expressions are <, >,
==, <=, >=. Pythia includes a set of aggregate functions
that can be applied to the filtered data. Implemented ag-
gregate functions are count, max, min, sum, average, and
sd (standard deviation). An example condition would be,
if the number (count) of transactions is less than 10... or if
the maximum customer satisfaction value is less than 3...

Actions modify the reputation score when their associated
conditions are satisfied on the filtered data. An action may
add, subtract or multiply any fixed amount or an aggre-

1http://akismet.com/development/api/

gated amount (per above) to the current reputation score.
If multiple rule conditions in a rule-set are satisfied, all of
the corresponding rule actions will be executed.

Examples of complete rules (combining filters, conditions,
and actions) that could be expressed using the rule language
include the following:

• if the average customer satisfaction value > 2.2 in
transactions where the customer satisfaction value is
not null, then increase the reputation score by 10%.

• if the user has more than 2 verified email addresses in
the system, increase the reputation score by 1.2.

• if any of the user’s claimed URLs can be categorized
as “commercial” then decrease the reputation score by
5.

• if the number of interactions where this users comment
was rejected is > 3 then decrease the reputation score
by 2.

One of the dangers of our system is that users might con-
coct rule sets that simply don’t work well or that developing
“good” rule-sets might be more difficult than can be man-
aged by casual users of the system. This can be mitigated
in two ways.

First, Pythia provides a set of system-defined rule sets
that can be used as-is or customized by relying parties for
their particular purpose.

Second, future systems will include methods for conduct-
ing A/B testing of rule sets so that the effect of a rule change
can be clearly determined. The use of A/B testing presup-
poses that the number of reputation queries by the relying
party is sufficient to provide statistically meaningful results
in the testing.

Users create rule sets using the relying party Web inter-
face, which is available to any user. Since we anticipate that
relying parties will not necessarily be programmers, we chose
to develop a Web front end for managing rule sets. Building
rules using a Web form limits the expressive power of the
rule language, but we deem this an acceptable trade-off for
ease of use.

4.2.3 Plug-In Architecture
Our goal was to build a general-purpose reputation frame-

work, but the base system necessarily needs to be specialized
to a specific domain for most uses. We determined to de-
velop a plug-in architecture so that this specialization could
be accomplished without modifying the code for the base
system.

The base system supports user provisioning, the underly-
ing identity system, identifier claims and verifications, build-
ing rule-sets for that information, and reputation queries.

To specialize the framework for a particular use, a plug-
in specifies what communication and transaction messages
are necessary for each integrating system. For example, an
online forum might want to categorize transactions reported
for posted comments using an enumeration of the status of
members (e.g. “veteran”) and use this information in calcu-
lating reputation. This same transaction attribute would
not necessarily be useful in a blog system.

A plug-in is defined in an XML-formatted file that spec-
ifies a transaction format. Since plug-ins are stored as files
that are loaded by the system at startup, installing, manag-
ing and transferring plug-ins to other installations is easy.

4.2.4 Using Pythia
Relying parties interact with Pythia in three distinct ways:

they define reputation algorithms by creating rulesets, they
make reputation queries about users, and they submit trans-
actions to record their interactions with users.

Reputation queries can be made about unauthenticated
identifiers. A reputation query includes the identifier of the
relying party, an identifier for the subject, and a rule-set
identifier. Any identifier stored in the system, email address
or URLs, can be the subject of a reputation request. The
system uses the rule-set identifier to select a rule set from
those previously defined by the relying party and carries
out the calculation, using the subject identifier to gather
the right data for the rule set to operate on.

Transactions can only be reported about authenticated
subjects to avoid users purposely contaminating the trans-
action store in order to bias future reputation calculations.
Any transaction feedback is done in an authenticated man-
ner that records identifiers for the relying party and the user
involved in the transaction.

4.3 Implementation
The Pythia framework is implemented in Ruby on Rails.

The system implements Web interfaces for users, relying par-
ties, and administrators. The user interface allows users to
claim and validate identifiers, view transactions to which
they were a party, and view any reputation requests that
were made about them.

Authentication for Pythia is provided using OpenID. The
Ruby libraries for OpenID are from OpenID Enabled2.

The underlying rules engine used by Pythia is Rools. 3

Rule sets can be defined by plug-ins or through the Web
interface by relying parties.

5. AN EXAMPLE APPLICATION
To demonstrate the validity of Pythia reputation calcu-

lations as a substitute for explicit authorization, we cre-
ated a plug-in that allows Pythia to be used in blog com-
ment moderation activities. Using this system, a relying
party’s blog system can query the reputation of people leav-
ing comments. Users are not explicitly authorized to leave
comments on the blog; instead, users with sufficiently high
reputations have their comments automatically approved,
while the comments of users with low reputations are au-
tomatically discarded. Users with intermediate reputations
have their comments held for moderation. Comment ap-
proval is an identity transaction that raises user reputation,
while comment deletion during moderation is a transaction
that greatly decreases user reputation. New users are given
a baseline reputation, to discourage users from abandon-
ing their reputation data via pseudonym use. For purposes
of the demonstration, we chose the MovableType blogging
platform, but any blogging system could be used.

Customizing the general purpose framework for comment
authorization required that we create a plug-in for the rep-
utation framework. In addition, we built a module for Mov-
ableType that automated the Pythia transaction submission
and reputation queries.

The plug-in defines its own schema for legal transaction
types and transaction values specific to blog comments. The

2http://openidenabled.com
3http://rools.rubyforge.com

Figure 2: RepKept Configuration Screen

framework uses the plug-in’s schema definition to receive and
store blog comment transactions.

Figure 2 shows the configuration screen in MovableType
for the reputation-based comment moderation system. The
MovableType plug-in we built to integrate with Pythia is
called RepKept.

The blog owner, acting as the relying party, specifies the
URL of the reputation server and gives authentication in-
formation for the reputation server. The relying party also
selects which rule set they want to use to calculate the rep-
utation score and gives thresholds for various actions. The
rule-sets in the drop-down box are automatically populated
from Pythia over the relying party API and represent rule
sets the relying party has created.

In our test, the blogging software asks users to authen-
ticate before they comment. Once the commenter has au-
thenticated, the blog uses that identifier for requesting a
reputation score and later submitting feedback. In our test,
blogs use OpenID as the authentication mechanism, but the-
oretically, any identifier that was associated with the user in
Pythia could be used.

Once a user submits a comment, a reputation request is
made and a reputation value is computed according to the
rule set the relying party has selected in the blog configu-
ration. Depending on the value returned and the threshold
values set by the relying party, the blog either automatically
publishes the comment, holds it for moderation, or deletes
it. Each of these generates feedback events. Each of these
feedback events may alter the commenter’s reputation score.

Feedback events contain the digital identifier of the rely-
ing party sending the feedback event and the authenticated
digital identifier of the subject of the feedback event. The
payload of a feedback event is simply a list of transaction

records each represented by a key-value pair. The key is the
transaction type and the value is a valid transaction value
as defined by the plug-in schema.

In the blog comment case a transaction type could be the
Commenter’s IP Address and the corresponding transac-
tion value could be 192.168.0.1. A transaction can also be
represented as an enumerated value. In this case the transac-
tion type contains the enumerated value and the transaction
value is empty.

The transactions in the blog comment example are pre-
dominately enumerated values. These values represent ac-
tions taken by the relying party given the reputation of the
subject. The blog comment example has four types of feed-
back. In this particular example the feedback transaction
types are mutually exclusive. However this need not be the
case in general. The transaction types are generated accord-
ing to the following scenarios:

• When the reputation for a subject exceeds the auto-
publish threshold of the relying party the comment
immediately published and a AutoPublished feedback
event is sent to the reputation server.

• In the case where a subject’s reputation falls below the
relying party’s auto-rejection threshold the comment
is immediately deleted and a AutoDeleted feedback
event is sent.

• If a subject’s reputation lands between the auto-reject
and auto-publish thresholds the comment is placed in
a queue for manual moderation. When a human takes
action on a comment in the manual moderation queue
either a ManualPublish or a ManualDelete feedback
event is sent to the reputation server.

6. FUTURE WORK
The framework we have described is still under develop-

ment. While some key ideas are represented in the system,
there is much to be done to complete our vision for them.

One of the most important additions to Pythia would be
to expand the set of actions and conditional operators avail-
able in the rule language. Having more expressive operations
would allow various computational models to be more easily
implemented. Many of the extant models use sophisticated
statistical functions well beyond the average and sd (stan-
dard deviation) operators now available.

The addition of built-in support for A/B testing would al-
low rules to be more easily evaluated for efficacy. Such A/B
testing should be fine-grained so that effects of individual
rules can be analyzed.

We’re confident that the current framework can be used in
any single domain with the addition of the appropriate plug-
in to customize the type of transactions stored in the system.
However, the use of information from multiple contexts (e.g.
blog comments and online purchases) or of different types
(e.g. transaction data vs. opinions) in a single system has
proven too complex. In particular, the current ‘hard-wired’
semantics of the reputation data reported by plug-ins makes
building cross-context reputation difficult; future versions of
Pythia will allow more flexibility in defining and classifying
transactions.

Currently, Pythia makes use of online data sources such as
the whois database or Akismet by hard-coding support for
the respective API into the framework. It should be possible
to create plug-in style architecture for adding these online
resources so that many more of then can be made available
to Pythia applications.

The system could calculate audit data about the trans-
actions and other information in the system and make that
available to the rule language. In so doing, relying parties
would be able to create rule sets that better take into ac-
count the quality of the data before proceeding with the
calculation.

Dellarocas discusses the kind of gaming and unfair bias
that can be present in online reputation systems. [7] While
the issues surrounding security and data contamination were
something we discussed consistently throughout the design
of Pythia, we have not conducted a formal security audit of
the system in order to elicit as many of these scenarios as
possible and respond to them.

One part of our design that has yet to be implemented
is allowing users to express opinions, ratings, and endorse-
ments about other users. For this to be useful some way of
recording interuser trust is necessary to measure the confi-
dence that should be placed in a particular opinion. Other-
wise, there’s no way for the system to know whose ratings
to use and whose to ignore.

Interuser trust can be defined explicitly by users, but
might also be calculated or otherwise inferred. One way
to infer interuser trust is by tapping into social cues that
are already on the Web. For example, allowing users to
claim OPML files from a site like Bloglines would give an
indication of the URLs of other users whose blogs they read.
FOAF (Friend of a Friend) data or other data from social
networking sites could also be used.

Another avenue for future research is using the system as
an identifier exchange service. The system already validates
claims to identifiers and associates those identifiers together.

Pythia could authoritatively state that a particular URL
is controlled by the same person who controls a particular
email address, for example. Identifier exchange services are
useful in aggregating Web services where a client supplies
one kind of identifier, but the server requires a different kind.

7. CONCLUSIONS
Reputation calculations can bridge the gap between the

authentication-as-authorization approach used in open sys-
tems and explicit authorization, giving operators of large-
scale web applications and social networks an easier way
to leverage their communities without negatively impacting
scalability. The emergence of generalized identity systems
such as CardSpace and OpenID has provided the authentica-
tion foundation upon which scalable reputation systems may
be constructed. This paper has described such a scalable
and flexible reputation system framework, Pythia, which has
been used to replace explicit authorization in web applica-
tions.

8. ACKNOWLEDGMENTS
This work grew out of a class project at Brigham Young

University in the Winter of 2006 and 2007. The authors
wish to acknowledge the significant contributions of Ryan
Phelps, who was instrumental in Pythia’s implementation.

9. REFERENCES
[1] Amazon auctions. http://auctions.amazon.com,

2006.

[2] R. Axelrod. The Evolution of Cooperation. Basic
Books, New York, 1984.

[3] D. B. Bromley. Reputation, Image and Impression
Management. John Wiley & Sons, 1993.

[4] J. Carter, E. Bitting, and A. A. Ghorbani. Reputation
formalization within information sharing multiagent
architectures. Computational Intelligence, 2(5):45–64,
2002.

[5] D. Chappel. Understanding Windows CardSpace.
http://msdn2.microsoft.com/en-gb/library/

aa480189.aspx, April 2006.

[6] P. Dasgupta. Trust: Making and Breaking Cooperative
Relations, chapter Trust As a Commodity, pages
49–72. Department of Sociology, University of Oxford,
2000.

[7] C. Dellarocas. Immunizing online reputation reporting
systems against unfair ratings and discriminatory
behavior. In Proceedings of the 2nd ACM Conference
on Electronic Commerce. ACM, 2000.

[8] C. N. Dellarocas. The digitization of word-of-mouth:
Promise and challenges of online feedback
mechanisms. SSRN eLibrary, 2003.

[9] eBay. http://www.ebay.com, 2006.

[10] B. Esfandiari and S. Chandrasekharan. On how agents
make friends: mechanisms for trust acquisition. In
Proceedings of the Fourth Workshop on Deception,
Fraud and Trust in Agent Societies 2001, pages 27–34,
2001.

[11] E. Friedman and P. Resnick. The social cost of cheap
pseudonyms. Journal of Economics and Management
Strategy, 10(2):173–199, 2001.

[12] D. Hume. A Treatise on Human Nature. Penguine
Classics (1975), 1739-1740.

[13] F. Labalme and K. Burton. OpenPrivacy.org.
http://www.openprivacy.org/.

[14] F. Labalme and K. Burton. Enhancing the internet
with reputations. Technical Report 0.7,
OpenPrivacy.org, March 2001.

[15] K.-J. Lin, H. Lu, T. Yu, and C.-e. Tai. A reputation
and trust management broker framework for web
applications. In International Conference on
e-Technology, e-Commerce, and e-Services, pages
262–269. IEEE, April 2005.

[16] P. R. Milgrom and J. Roberts. Predation, reputation,
and entry deterrence. Journal of Economic Theory,
27:280–312, 1982.

[17] J. Miller. MicroID - small, decentralized, and
verifiable identity. http://microid.org/.

[18] L. Mui, M. Mohtashemi, and A. Halberstadt. A
computational model of trust and reputation. In
Proceedings of the 35th Hawaii International
Conference on System Sciences. IEEE, IEEE, 2002.

[19] L. Mui, M. Mohtashemi, and A. Halberstadt. Notions
of reputation in multi-agent systems: A review. In
Proceedings of the First International Conference on
Autonomous Agents and MAS, pages 280–287,
Bologna, Italy, July 2002. ACM.

[20] OpenID specification. http://openid.net/specs.bml,
2006.

[21] P. Resnick, K. Kuwabara, R. Zeckhauser, and
E. Friedman. Reputation systems. Communications of
the ACM, 43(12):45–48, December 2000.

[22] P. Resnick, R. Zeckhauser, J. Swanson, and
K. Lockwood. The value of reputation on eBay: A
controlled experiment. Experimental Economics,
9(2):79–101, June 2006.

[23] J. Sabater and C. Sierra. Review on computational
trust and reputation models. Artificial Intelligence
Review, 24(1):33–60, September 2005.

[24] M. Schillo, P. Funk, and M. Rovatsos. Using trust for
detecting deceitful agents in artificial societies. In
Applied Artificial Intelligence, Special Issue on Trust,
Deception and Fraud in Agent Societies,
14(8):825–848, September 2000.

[25] S. Sen and N. Sajja. Robustness of reputation-based
trust: boolean case. In AAMAS ’02: Proceedings of
the first international joint conference on Autonomous
agents and multiagent systems, pages 288–293, New
York, NY, USA, 2002. ACM Press.

[26] R. L. Trivers. The evolution of reciprocal altruism.
Quarterly Review of Biology, 46:35, 1971.

[27] S. Wasserman and K. Faust. Social Network Analysis:
Methods and Applications. Cambridge University
Press, 1994.

[28] P. J. Windley. Digital Identity. O’Reilly Media, 2004.

[29] P. J. Windley. Principles of reputation. http://www.
windley.com/archives/2006/06/principles_of_r,
June 2006.

