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Formal Modeling and Verification of Microprocessors

Phillip J. Windley

Abstract— Formal verification has long been promised as a
means of reducing the amount of testing required to ensure cor-
rect VLSI devices. Verification requires at least two mathematical
models: one that describes the structure of a computer system
and another that models its intended behavior. These models
are called specifications. Verification is a mathematical analysis
showing that the behavior follows from the structure. Formal
verification of microprocessor designs has been quite successful.
Indeed, several verified microprocessors have been presented in
the literature, and one microprocessor where formal modeling
has been applied is commercially available. These efforts were
virtuoso performances—largely academic exercises carried out
by experts in logic and specification.

This paper presents a methodology for microprocessor verifica-
tion that significantly reduces the learning curve for performing
verification. The methodolegy is formalized in the HOL theorem-
proving system. The paper includes a description of a large case
study performed to evaluate the methodology.

The novel aspects of this research include the use of abstract
theories to formalize hardware models. Because our model is
described using abstract theories, it provides a framework for
both the specification and the verification. This framework re-
duces the number of ad hoc modeling decisions that must be
made to complete the verification. Another unique aspect of
our research is the use of hierarchical abstractions to reduce
the number of difficult lemmas in completing the verification.
Our formalism frees the user from directly reasoning about the
difficult aspects of modeling the hierarchy, namely the temporal
and data abstractions.

We believe that our formalism, coupled with case studies and
tools, allows microprocessor verification to be done by engineers
with relatively little experience in microprocessor specification
or logic. We are currently testing that hypothesis by using the
methodology to teach graduate students formal microprocessor
modeling,

[. INTRODUCTION

OMPUTERS are being used with increasing frequency
Cin areas in which the correct implementation of the
computer hardware is critical. Testing has traditionally been
used to exclude faults in computers; however, the effectiveness
of testing is limited by the combinatorial explosion inherent in
any testing technique. The limitations of testing, coupled with
the ever-increasing size of VLSI devices, have led to a search
for alternatives to testing, such as mathematical modeling and
analysis.

Manuscript received July 29, 1991; revised December 2, 1992; July 28,
1993. This work was supported by NASA under Space Engineering Research
Center Grant NAGW-1406 and under Boeing Contract NAS1-18586, Task
Assignment No. 3, with NASA-Langley Research Center.

The author is with the Laboratory for Applied Logic, Department of
Computer Science, Brigham Young University, Provo, UT 84602-6576 USA;
E-mail: windley@cs.byu.edu.

IEEE Log Number 9407556.

Formal models of VLSI designs are usually called specifica-
tions; specifications provide a concise description of the behav-
ior of the device that can be used by design engineers, layout
technicians, production engineers, test engineers, technical
writers, and users. The application of symbolic mathematical
analysis to these models is usually called verification.

Verification is largely an exercise in demonstrating that
a design has certain properties. The primary property that
concerns us is functional correctness; that is, showing
that a design has an intended behavior. This paper is
largely concerned with verifying functional correctness,
but other work by the author has been aimed at using
specifications to demonstrate, for example, the integrity
of supervisory mode in a RISC-like microprocessor [20]
and the correctness of rules used in instruction stream
reordering [22].

Correctness verification uses at least two descriptions of
a system: one that describes how the circuit is constructed,
called the structural specification, and one that describes
what the circuit is supposed to do, called the behavioral
specification. Correctness is shown by demonstrating through
mathematical proof that the former implies the latter. Design
faults are discovered as part of demonstrating correctness and
are corrected as the verification proceeds. Thus, verification
can be viewed as part of the design process itself, not as an ex
post facto process that gives a seal of approval. Typically, some
sort of mechanical proof tool is used in conjunction with the
verification to reduce the tedium associated with manipulating
large specifications.

Treating microprocessor design formally can be a difficult
task. Avra Cohn, in [6], describes her specification of VIPER’s
EBM from informal descriptions supplied by VIPER’s design-
ers as follows:

VIPER'’s top-level specification and its major-state level
were both supplied in a logical language; but its block-
level model was given partly formally and partly pictori-
ally (as was natural). Combining these two parts required
both ingenuity and some guesswork. The guesses were
based on the coincidence of line names, on the names
of bound variables in the functional definitions, and
on the annotations in the text of the definitions. None
of these notational devices can be regarded as formal
specification.

This statement not only describes the difficulties of developing
formal specifications from the kinds of informal descriptions
commonly in use, but it also alludes to the inadequacies of
those descriptions. After the specification is complete, verify-
ing that the implementation meets the behavioral specification
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is equally arduous, sometimes requiring the proof of hundreds
of multipage theorems.

Every microprocessor verification done to date has been a
virtuoso performance, carried out by experts in logic, spec-
ification, and mechanical reasoning. In contrast to this, we
are striving to make microprocessor verification a viable tool
for VLSI design engineers. To that end, this paper presents a
methodology for verifying microprocessors. This methodology
is embodied in a formalism for the HOL theorem prover,
providing tool support for a step-by-step approach to system
verification. In addition, we have produced several case studies
and are working on additional examples of verified systems
for use in instructing engineers in microprocessor verification.
The latter part of this paper presents a case study of the
specification and verification of a microprocessor using our
methodology.

Organization of the Paper: This paper consists of two
parts. In the first part, Section II presents a brief introduction
to the HOL theorem proving system, Section III contains a
mathematical model of interpreters, and Section IV contains
a formalization of that model in the HOL theorem-proving
system.

The second part of the paper demonstrates the use of
the model in a case study involving the specification and
verification of a microprocessor called AVM-1. Section 5
presents an introduction to AVM-1, Section VI contains the
hierarchical specification of AVM-1 in HOL, Section VII
presents the verification of AVM-1, and Section VIII presents
our observations about the case study.

II. A BRIEF INTRODUCTION TO HOL

To ensure the accuracy of our specifications and proofs,
we used a mechanical verification system to develop them.
The mechanical system performs syntax and type checking
of the specifications and prevents the proofs from containing
logical mistakes. The HOL system was selected for this project
because it has higher order logic, generic specifications, and
polymorphic type constructs. These features directly affect the
expressibility of the specification language. Furthermore, HOL
is widely available, robust, and has a growing international
user base. However, nothing in our work requires that the
HOL theorem-proving system be used.

HOL is a general theorem-proving system developed at the
University of Cambridge [3, 8] that is based on Church’s
theory of simple types, or higher order logic [4]. Although
Church developed higher order logic as a foundation for
mathematics, it can be used for reasoning about computational
systems of all kinds. Similar to predicate logic in allowing
quantification over variables, higher order logic also allows
quantification over predicates and functions, thus permitting
more general systems to be described.

HOL is not a fully automated theorem prover, but, it is more
than simply a proof checker; it serves as a proof assistant. HOL
has several features that contribute to its use as a verification
environment.

* Several built-in theories, including booleans, individuals,

numbers, products, sums, lists, and trees. These theories
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build on the five axioms that form the basis of higher
order logic to derive a large number of theorems that
follow from them.

* Rules of inference for higher order logic. These rules
contain not only the eight basic rules of inference from
higher order logic, but also a large body of derived
inference rules that allow proofs to be done using larger
steps. The HOL system has rules that implement the
standard introduction and elimination rules for Predicate
Calculus as well as specialized rules for rewriting terms.

« A large collection of tactics to support goal-directed
proof. Included in HOL are tactics that rewrite a goal
according to some previously proven theorem or defini-
tion, remove unnecessary universally quantified variables
from the front of a goal, and split equalities into two
implicative subgoals.

* A proof management system that records the state of an
interactive proof session.

¢ A metalanguage, ML, for programming and extending
the theorem prover. Using the metalanguage, tactics can
be combined to form more powerful tactics, new tactics
can be written, and theorems can be aggregated to form
new theories for later use. The metalanguage makes the
verification system extremely flexible.

For the most part, the notation of HOL is that of standard
logic: ¥, 3, A, V, etc. have their usual meanings. A few con-
structs deserve special attention because that are used in this
paper.

e HOL types are identified by a prefixed colon. Built-
in types include :bool and :num. Function types are
constructed using —. HOL is polymorphic; type variables
are indicated by a type names beginning with an asterisk.

¢ The HOL conditional statement, written a — b | ¢,
means “if a, then b, else ¢”.

e The HOL list containing elements a, b, c, and d is
represented as [a;0; c;d]. A list that contains elements
with type x has the type : (x) list, where x can be
any valid type (including type variables since HOL is
polymorphic).

e EL is a curried function that accepts two arguments, a
number, n, and a list, and returns the nth member of the
list.

* Tuples are formed using a comma. Parentheses are only
required when the scope of the comma is ambiguous.
The function FST returns the first member of a tuple and
SND returns the second.

e The construct let vl = exprl and v2 = expr2
and --- in simultaneously defines local variables v1,
v2, etc. with values exprl, expr2, etc.

III. FORMAL MICROPROCESSOR MODELING

Numerous efforts have been made to formally model mi-
croprocessors. The best known of these include J. Joyce’s
Tamarack microprocessor [12], W. Hunt's FM8501 micro-
processor [10], and A. Cohn’s VIPER microprocessor [5].
Tamarack is a simple microprocessor with only 8 instructions.
FM&8501 is larger (roughly the size of a PDP-11) but has
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not been implemented (a 32-bit version has been verified and
implemented by Hunt et al. [11]). Perhaps the most interesting
of these is VIPER, since even though VIPER is signifi-
cantly simpler than today’s general-purpose microprocessors,
its verification provides a benchmark of the state-of-the-art in
microprocessor verification.

VIPER was designed by Britain’s Royal Signals and Radar
Establishment (RSRE) at Malvern to provide a formally ver-
ified microprocessor for use in safety critical applications; it
is commercially available. VIPER is the first microprocessor
intended for commercial use where formal verification was
used. However, the verification has not been completed be-
cause of the large number of instruction cases and the size of
the proofs in each of the cases. This is not to say that the proof
could not be completed, but that it could be carried out only
at great expense. Recent work on hierarchical specification
[18], coupled with the work presented here, has overcome
the problems that faced the VIPER verification team, and
microprocessors significantly more complicated than VIPER
are now within the realm of formal treatment. The case study
in Sections V-VII is one example.

The specifications for the microprocessors mentioned above
appear very different on the surface; in fact, the specification
for FM8501 is even in a different language than the specifica-
tions of Tamarack and VIPER. On closer inspection, however,
we find that each of them (as well as many others) use the
same implicit behavioral model. In general, the model uses a
state transition system to describe the microprocessor. We call
this model an interpreter.

The essence of verification is to relate mathematical models
at different levels of abstraction. The rest of this section
gives a mathematical definition of the interpreter model and
shows how two interpreters are related. In the discussion that
follows, and for the rest of the paper, we speak of the “abstract
level” and the “concrete level,” but these terms are relative;
as we move up and down a hierarchy of interpreters, what
we call “abstract” at one level will be termed “concrete” with
respect to the level above it. As a matter of convention, we
will decorate variables that represent the concrete level with
primes.

A. Basic Types

The basic types for our model are shown in Table L. In
addition to these basic types, we also use the following type
constructors: product, written (o x 3); coproduct, (or
sum) written (o + (3); and function, written (o« — 3). An
n-tuple is indicated by (@1 X @z X +++ X Gn-1 X 0tg).

B. State

At times it is convenient to treat state as an object of type
S, where S is uninterpreted. This allows us to treat state in
an abstract manner, even though we may know nothing of its
structure or content.

Eventually, we will provide interpretations for S to model
a specific machine. To provide such an interpretation, we
represent state using n-tuples. We let S, be the domain of
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TABLE I
Basic TYPES FOR INTERPRETER DEFINITION
Symbol | Members Meaning
T {true, false} | truth values
N {0,1,---} natural numbers
B N-T bit—vectors
M N—-B stores
t ts i
O @]

o o o o o o o o o

A A A A

F F F T F T T F T

Fig. 1. The function, F, which maps time at one level to another, can be
defined in terms of a predicate, G, which is true only when the mapping occurs.

n-tuples representing state. These n-tuples have the type
(a1 X @z X +++ X Gy X 0tn)
where
Vi-o; €T+ B+M

Whether or not S is interpreted, we write S < S’ to indicate
that S is an abstraction of S’. When S is an abstraction of S’
there exists a function, S:8’ — S. The function S is called
the state abstraction function.

C. Time

In general, different levels in the interpreter hierarchy have
different views of time. A temporal abstraction function maps
time at the abstract level to time at the concrete level [9],
[12], [15]. Fig. 1 shows a temporal abstraction function, F.
The circles represent clock ticks. Notice that the number of
clock ticks required at the concrete level to produce one clock
tick at the abstract level is irregular.

The temporal projection, F, can be defined recursively
on time. We define F in terms of a predicate, G, which is
true whenever there is a valid abstraction from the concrete
level to the abstract level. In a microprocessor specification,
G is usually a predicate that indicates when the lower level
interpreter is at the beginning of its cycle—a condition that
is easy to test.

The function F is defined recursively so that F(G,0) is
the first time that G is true and F(G,(n + 1)) is the next
time after time n when G is true. The resulting function is
monotonically increasing. We use N to represent time. Thus,
we define F:(N — B) x N — N such that

Yom-(n>m)= (F(G,n)>F(G,m))

We refer the interested reader to the references given above
and to [17] for the details of the temporal abstraction function.
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D. State Streams

A state stream, U, is a function from time to state, IN — S.
We have chosen n-tuples of booleans, bit-vectors, and stores
to represent state. The application of a stream to some time,
t, yields an n-tuple representing the state at time ¢. We use a
lambda expression for our concrete representation.

At - (a1(t),a2(t), t 'aan—l(t)wan(t))
where
Vi-a; € N = (T +B+M)

An important part of our theory is the abstraction between
state streams at different levels. State stream « is an abstraction
of state stream v’ (written (u < v’ ) if and only if

1) each member of the range of u is a state abstraction of

some member of the range of «’, and_

2) there is a temporal mapping from time in « to time in v’. ,
There are two distinct kinds of abstraction here: the first is a
data abstraction; the second is a temporal abstraction.

Using the state abstraction function, &, and the tempo-
ral abstraction function, F, we define stream abstraction as
follows

u<u =3(S:8 —=8) - JFN—-N)-SovoF=u-
where o denotes function composition.

E. Environments

The environment represents the external world; it plays
an important part in our theory. The environment is where
interrupt requests originate, reset signals are generated, and
so on. In our model, the environment is used only for input;
output to the environment is assumed to be simply a function
of the state and environment.

At the abstract level, we treat the environment as an
uninterpreted type. We know nothing about its structure or
content. We denote it as E. Just as we defined S, the state
abstraction function, we define an environment abstraction
function, £, such that £&:E’ — E. When we provide an
interpretation for £, we represent the environment using n-
tuples of booleans and bit-vectors. ' .

We perform the same kinds of abstraction on the environ-
ment as on states. Temporal abstraction is performed as it was
for states. We define abstraction for environment streams in
the same manner as we defined it for state streams. Thus we
write ¢ < ¢’ when e is an stream abstraction of ¢’ and define
stream abstraction for environment streams as follows:

e<e =3EE - E)-AFN-N)-£oe'oF=e

F. The Interpreter Specification

The preceding parts of this section have given preliminary
definitions for concepts that are important in the mathematical
definition of interpreters. This section presents that definition.
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Interpreters are state transition systems. An interpreter, Z,
is a predicate defined in terms of a 3-tuple, 7, K,C, where
J.K, and C are defined as follows.

» Let J be the set of all functions with domain (S x E)
and codomain S. Not all functions in J are meaningful;
the specifier’s job is to choose meaningful functions. We
use a subset of J to represent the instruction set; we call
this set 7. The functions in J provide a denotational
semantics for the instructions that they represent.

* In order to uniquely identify each instruction in 7, we
associate it with a unique key. At the abstract level,
we take keys from the uninterpreted domain, K. At the
concrete level, keys can have various representations, as
we will see in the example in Section 6. We must be
able to choose instructions from J according to some
predefined selection criteria. The selection is based on
the current state and environment. We define X to be a
function with domain (S x E) and codomain K.

* We define C7 to be a choice function that has domain K
and codomain (SxE — 8§). C7 selects the state transition
function from J that is associated with key K.

We define an interpreter, Z[s, €], as a predicate over the state
stream, s, and the environment stream, e. The definition of 7
is given as

I[s,e] = VE:N - 5141 = N(s¢, 1)
where
N =Cq(k:)
and
ke = K(se,e) -

In this equation, s:(e;) is the state (environment) in the
state (environment) stream s(e) at time ¢. The predicate, Z,
constrains the state of the interpreter at time ¢ + 1 to be
a function, N, of the state and environment at time ¢. The
function is determined by applying the choice function, C 7, to
the key returned by K for the state and environement at time ¢.

G. Interpreter Verification

Our goal is to prove a correctness relation between the
interpreters at different levels of a microprocessor abstraction.
In particular, for two interpreters, Z,, and Z;, we wish to show
that

Im [Sﬂu em] = I@ [557 E[]

where s,,(e,,) is the state (environment) stream at level m
and sy (eg) is the state (environment) stream at level £. By
definition, we require that s; < s,, and e; <X ep,.

When this implication is true, Z, is an abstraction of 7,
and Z,, is said to implement 1.

The correctness theorem above follows from the following
lemma:

vy e J 'Im(smaem) A (J = Cj(kt))

= 3+ (S0 sm)te) = J(S08m)e, (€0 em)e)



58

This lemma, which we call the instruction correctness lemma,
states that every instruction follows from the concrete inter-
preter, Z,,,. Specifically, it says that for every instruction, j
in 7, if j is selected, then applying j to the current abstract
state and environment, (S 0 s, )¢ and (€ o €,,)s, yields the
same abstract state that results from letting the implementing
interpreter Z,,, run for ¢ cycles.

The instruction correctness lemma suggests a case analysis
on the instruction set and ignores temporal abstraction, stating
only that there exists a time in the future when the states
correspond. This lemma plays an important role in the work
we describe next.

IV. A MODEL OF INTERPRETERS IN HOL

The similarities in past microprocessor verifications can be
exploited to form & methodology for microprocessor verifi-
cation in general. To make this information usable, we have
formalized the microprocessor specification model in the HOL
mechanical theorem-proving system. The formalization does
several things.

1) The formalization provides a step-by-step approach to
microprocessor specification by enumerating the impor-
tant definitions that need to be made for any micropro-
cessor specification.

2) Using the formalization, the verification tool can derive
the lemmas that need to be verified from the specifica-
tion.

3) After these lemmas have been established, the verifi-
cation tool can use the formalization to automatically
derive the final result from the lemmas.

To formalize the model developed in the last section, we use
abstract theories. The next section discusses abstract theories
and how they can be used to formalize mathematical models.
The remaining sections discuss the parts of the generic model.

A. Abstract Theories

A theory is a set of types, definitions, constants, axioms and
parent theories. Logics are extended by defining new theories.
An abstract theory is parameterized so that some of the types
and constants in the theory are undefined inside the theory
except for their syntax and an algebraic specification of their
semantics. Group theory provides an example of an abstract
theory: the multiplication operator is undefined except for its
syntax (a binary operator on an uninterpreted type) and a
semantics given by the axioms of group theory.

Abstract theories are useful because they provide proofs
about abstract structures which can then be used to reason
about specific instances of those structures. In groups, for
example, after showing that addition over the integers satisfies
the axioms of group theory, we can use the theorems from
group theory to reason about addition on the integers.

There are two key components of an abstract theory: 1)
the abstract representation and 2) the theory obligations. The
abstract representation is a set of abstract objects and a set
of abstract operations. The operations are unspecified; that
is, we don’t know (inside the theory) what the objects and
operations mean. Their partial meaning is specified through the
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TABLE 11
THE ABSTRACT FUNCTIONS AND THEIR TYPES
FOR THE GENERIC INTERPRETER MODEL

Operation Type

instructions | : (*key x (*state—*env—*state))list
select (*state—*env—*key

key :*key—num

substate :*state’ —*state

subenv 1kenv’ —*env

Impl :(time’ —*state’)— (time’ —*env’)—bool
count cx¥state’ —*env’ —x*xkey’

begin 1*key’

theory obligations—a set of predicates that define relationships
among members of the abstract representation. The abstract
theory models any structure with objects and operations that
satisfy the predicates.

The theory obligations axiomatize the theory. Using the
obligations as axioms, we prove theorems of interest about the
abstract objects and operations. The goal is to use the abstract
theory to reason about specific objects by instantiating the
abstract theory with a concrete representation that has been
shown to meet the obligations. The instantiation specializes
the abstract theorems, producing a set of theorems about
the concrete representation. The concrete representation is an
instance of the abstract theory and represents a member of the
class of abstract objects that the abstract theory describes.

HOL, the verification environment used in the research
reported here, does not explicitly support abstract theories;
however, HOL’s metalanguage, ML, combined with higher
order logic, provides a framework sufficient for implementing
abstract theories [21]. Several specification and verification
systems, such as EHDM [16], offer explicit support for abstract
theories.

B. The Abstract Representation

We specify the abstract representation for the generic inter-
preter model by defining a list of abstract types and operations.
Table II shows the operations and their types.

When compared with the mathematical description given in
the last section, the formalization in HOL is more operational,
largely for efficiency reasons. As an example, we will use
lists, rather than sets, to describe the instruction set. HOL can
express choice on sets, but the resulting proofs are consider-
ably more difficult than similar proofs about lists. Certainly
the readability of specifications is an important problem;
most microprocessor specifications are difficult enough to read
without unneeded details. Current work by the author and
others is addressing these notational problems. Our ultimate
goal is specifications that are readily readable as well as
practically verifiable.

Before describing the abstract representation, we must em-
phasize that the representation is abstract, and thus the types
and operations have no definitions. The descriptions that
follow are what we intend for the representation to mean.
The representation is purely syntactic, however, the names
are simply convenient mnemonics.
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The following abstract types are used in the representation.

s :*state represents the state and corresponds to S from
the last section.

s :*envy represents the environment and corresponds to E
from the last section.

» : *key is type containing all of the keys and corresponds
to K from the last section.

In addition to these abstract types, the representation makes
use of several concrete types: : t ime, :num, and :bool. The
list and — (function) type constructors are used as well. We
add primes to the types to indicate that they represent state,
time, etc., at the concrete rather than the abstract level of the
hierarchy.

The abstract representation is divided into three parts. The
first contains those operations concerned with the interpreter
proper.

¢ instructions represents the instruction set, which

is represented by a list. Each member of the list is an
instruction that associates a key with-a state transition
function. Throughout the rest of the paper, we make
use of two selector functions, KEY and IFUNC, which
respectively select the key and state transition function
from an instruction. instructions corresponds to J
from the last section.

¢ select represents the function that selects a key based

on the present state and environment. select corre-
sponds to K from the last section. '

¢ key maps an object of type : *key to a number. This

number is used to index the list containing the instruc-
tions. key is used in conjunction with the EL function
(which selects the nth member of a list) to implement C
from the last section.

The second part contains the abstraction functions that relate
the state and environment at the concrete level to the state and
environment at the abstract level.

o substate is the state abstraction function for the inter-
preter. The domain of substate is primed indicating
that it is from the concrete level. substate corresponds
to S from the last section.

¢ subenv is the environment abstraction function similar
to substate. subenv corresponds to £ from the last
section.

Because we want to prove correctness results about the in-
terpreter, we must have an implementation to verify the
interpreter against. The third part of the abstract representation
contains three functions that provide the necessary abstract
definitions for the implementation.

* Tmpl is the abstract implementation. We could have
chosen to make this function more concrete and define it
as we do the interpreter, but doing so would require that
every implementation be an interpreter or at least have
some pre-chosen structure. As we see in the example, the
implementation need not be modeled as an interpreter at
all. Thus we say nothing about it except to define its type;
its structure and operation are completely unknown.

* count is analogous to select except it operates at

the concrete level. Notice that it uses the state and
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environment at the concrete level to produce a key for
the concrete level.

* begin denotes the beginning of the implementation

clock cycle.
The functions count and begin are used to implement the
predicate G that indicates when time at the concrete and
abstract levels correspond.

We must emphasize once again that even though we have
spent several paragraphs defining what each of the members
of the abstract representation mean, they are truly abstract
and have no meaning in the formal model other than the
relationships that are defined in the theory obligations.

C. The Theory Obligations

Theory obligations represent the semantics of the generic
model. Inside the model, the only thing we know about the
abstract representation presented in the last section is what the
theory obligations say about it.

To prove the correctness result, we must know something
about the implementation. Since the implementation is a
member of the abstract representation, nothing is known about
it except the requirements given in the theory obligations.
Proving that the implementation implies the interpreter def-
inition is typically done by case analysis on the instructions;
we show that when the conditions for an instruction’s selection
are right, the instruction is implied by the implementation. We
call this the instruction correctness lemma.

The predicate INSTRUCTION_CORRECT expresses the
conditions that we require in the instruction correctness lemma.
INSTRUCTION_CORRECT is a good example of the kind of
information that is captured in the generic model. Previous
microprocessor verifications created this lemma, or one similar
to it, in a largely adhoc manner. INSTRUCTION_CORRECT
expresses the correctness condition for a single instruction,
namely that under certain conditions it follows from the
definition of the more concrete implementation.

The complete definition of INSTRUCTION_CORRECT is

given below:
Fdet INSTRUCTION_CORRECT s’ e’ inst =
let s = (A t (substate (s’ t))) in
let e = (A t (subenv (e’ t))) in
let g = (A t (count (s’ t) (e’ t)
= begin)) in (
(Impl s’ e’') =
(V t: time’.
(select (s t) (e t)= (KEY inst)) A
{count (s’ t) (e’ t)= begin) =
3 ¢. Next g (t,t+c) A
((IFUNC inst) (s t) (e t)
= (s (t + c))))).

In the definition, s’ (e’ ) represents the state (environment)
stream at the more concrete level; s (e) is the state
stream (environment) at the abstract level and is derived from
s’ (e’) using the function substate (subenv). The
predicate g is the predicate G of Fig. 1. Recall that § was
true whenever the states in the concrete and abstract levels
corresponded. In our model this happens whenever the counter
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in the implementation (denoted by count (s’ t) (e’ t))
is at the beginning (denoted by begin). Recall that KEY and
IFUNC are the selectors for the key and instruction function
respectively.

INSTRUCTION_CORRECT states that the implementation
implies that for every time, t, if inst is selected and the
implementation’s counter is at the beginning, then there exists
a time c cycles in the future such that applying the instruction
to the current state yields the same state change that the
implementation does in ¢ cycles.

Using INSTRUCTION_CORRECT we can define the theory

obligations:

EVERY (INSTRUCTION_CORRECT s’ e’)
instructions

V k:*key - (key k) < (LENGTH
instructions)

V k:*key - k = (KEY (EL (key k)

instructions)).

The first obligation says that every instruction in the list
of instructions, instructions, satisfies the predicate IN-
STRUCT'ION_CORRECT. The second obligation says that ev-
ery key maps to some location in the instruction list. The third
obligation says that the abstract function key maps a key to
the instruction with which it is associated (i.e., that the list of
instructions is ordered correctly).

The obligations are used in two ways. First, they are
used axiomatically in proving the correctness result; we do
this in the next section. Second, the obligations form a set
of necessary and sufficient conditions for showing that the
implementation meets its specification. In the second case, they
are the properties that users of the model must prove about an
instantiation; we show this in Section V1. At first the theory
obligations may seem like an additional proof burden, but in
fact, they are typical of the lemmas that have to be proven
in any microprocessor proof. More to the point, the theory
obligations provide a method for deriving the proof obligations
from the specification. Without the theory obligations, these
lemmas would be arrived at in an ad hoc fashion.

D. The Correctness Statement

One of the important parts of the collection of abstract the-
orems is the definition of a generic interpreter. The definition
is based on functions from the abstract representation.

Fdet INTERP s e =

VY t: tine
let inst = EL (key (select (s t)

(e t))) instructions in
s(t + 1) = (IFUNC inst) (s t) (e t)

The specification of an interpreter is a predicate that relates
the contents of the state stream at time ¢ + 1 to the contents
of the state stream at time ¢. The relationship is defined using
the functions from the abstract representation.

The correctness result can be proven from the definition of
the interpreter and the theory obligations as follows:

F let g = (A t: time{count (s’ t) (e’ t)
= begin)) in
let abs = (Temp_Abs g) in
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let 5 = (substate o s’ o abs) and
2 = (subenv o e’ o abs) (

(Impl s’ e’) A

(3 t-gt) =

INTERP s e)

The correctness statement says that if the implementation is
valid on its state and environment streams and there is a time
when the concrete clock is at the beginning of its cycle, then
the interpreter is valid on its state and environment streams.

This theorem is remarkably similar to the requirement for
correctness developed in Section III-G. The function abs is
analogous to F and is defined in terms of a general temporal
abstraction function Temp_Abs using the predicate g.

In the correctness statement, s’ (e ) is the state (environ-
ment) stream in the implementation. The term (substate
o s’ o abs) ({subenv o e’ ¢ abs)) is the state
(environment) stream for the interpreter defined in the model.
Thus by definition, s ( e) is a data and temporal abstraction
of s’ (e’)ands <X s’ (e X e’)

There is one major difference between this correctness
statement and the one given in Section III-G, the additional
prerequisite that there exists at least one time when the
predicate g is true. This requirement is a reset requirement
that ensure liveness. The fact that it shows up here and not
in the less formal statement is an example of the utility of
mechanical verification: there are no hidden assumptions.

The result in this section is a correctness statement for
a generic interpreter model. The model defines a class of
computational objects. The correctness result is a verification
of every microprocessor that matches the semantics defined in
the model; that is, once a microprocessor is shown to meet the
theory obligations of our model, this correctness result applies
to it without further work.

The most important benefit of the generic model is that it
structures the proof. A generic model states explicitly which
definitions must be made (one for each of the members of the
abstract representation) and which lemmas need to be proven
about these definitions (namely, the three theory obligations).
This is a great improvement over previous microprocessor
verifications in which these decisions were made on an ad
hoc basis.

V. AVM-1

We have designed and verified a computer designated AVM-
1 (A Verified Microprocessor) to serve as a test-bed for
microprocessor verification. For a more detailed look at the
architecture and organization of AVM-1, see [17].

Our design is the result of an attempt to build a mi-
croprocessor that is at once verifiable, implementable, and
usable. We have been influenced by our own experience in
verifying microprocessors [18], the experience of others [5],
[12], and our desire to provide hardware features in support of
operating systems; such features include interrupts, memory
management, and supervisory modes. AVM-1 is part of a
verified chip set being designed and verified by the Computer
Systems Verification Group at the University of California,
Davis. Other components of the system include a memory
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TABLE III
THE PROGRAM STATUS WORD

Bit | Mnemonic | Meaning when set

0 | zflag Last ALU result was zero

1 | cflag Last ALU operation caused a carry

2 | nflag Last ALU result was negative

3 | vlag Last ALU operation caused a overflow
4 |ie Interrupts enabled

5 | sm In supervisory mode

management unit, a floating point unit, an interrupt controller,
and a direct memory access chip.

A. The Architectural View

A computer’s architecture is its programming interface; an
architecture describes a language and how that language is
interpreted. The language definition contains a specification
of the computer’s state and the instructions available for
manipulating that state. The architecture must also define how
instructions are selected.

The Registers: AVM-1 has a load-store architecture based
on a large register file. The register file is divided into three
portions:

1) register 0, which is read-only and contains the constant
05

seven supervisor-mode registers, including a distin-
guished register for use as the supervisor stack pointer
(SSP). The supervisor-mode registers are read-only
unless the CPU is in supervisor-mode (determined by
the state of the 6th bit in the program status word);

3) twenty-four general-purpose registers.

2)

Two additional registers are visible at the architectural level:
the program counter and the program status word. The program
counter (PC) is used to sequence the computer—it indicates
which instruction to execute next. The program status word
(PSW) is used to keep track of the status of the last ALU
operation, whether or not interrupts are enabled, and the
privilege level of the CPU. Table III. shows the meaning of
the 6 bits in the program status word.

The Instruction Set: The instruction set contains 30 instruc-
tions. The instruction set for AVM-1 was inspired by the RISC
[ instruction set found in Katevenis [14]; it is a load-store
architecture, meaning that most instructions are not allowed
to access memory for their operands. The instruction formats
are simple and regular.

The 30 programming level instructions include the follow-
ing:

e 8, 3—argument arithmetic instructions

e 8, 2—argument arithmetic instructions that use a 16-bit

immediate value

* 4 instructions for loading and storing registers

* 10 instructions for performing user interrupts, jumps,

subroutine calls, and shifts.

The Instruction Format: The instruction formats are simple
and regular. Fig. 2 shows the four instruction formats. All the
formats use the same opcode field.
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Format 1:

31 25 20 15 10 0
opcode . dest A ‘ B ‘ unused —I .

Format 2:

31 25 20 15 0

T

opcode | dest A ! immediate {

Format 3:

31 25 20 0
opcode | dest | unused !

Format 4:

31 25 0
opcode unused —l

Fig. 2. The instruction formats in AVM-1.

In formats 1 and 2, the instruction is divided into four fields.
The top 6 bits (31-26) give the opcode of the instructions.
The next 5 bits (25-21) denote the destination register in most
operations. The third field (bits 20-16) selects the register used
as the A operand in most operations. In format 1, the fourth
field is composed of bits 15—11 and is used to select the register
used as the B operand. In format 2, the fourth field uses all
of the 16 remaining bits to form an immediate number (0 to
(2% — 1)),

Format 3 is identical to formats 1 and 2, except that only
the opcode and destination fields are used. Format 4 uses only
the opcode field.

There is a trade-off between instruction format complexity
and verification effort, so in general the instruction format
should be kept as simple as possible. A regular instruction
format, while not essential to verification, can greatly reduce
the amount of detail that must be dealt with in the proof.

B. The Organizational View

The implementation of AVM-I can be divided into two
major parts: the datapath and the control unit. We will briefly
describe the datapath and discuss the timing issues that affect
AVM-!’s control unit.

The AVM-1 Datapath: The AVM-1 datapath is loosely
based on the AMD 2903 bit-sliced datapath [1] shown in
Fig. 3. The signals shown at the right-hand side of the figure
connect to the control unit. The signals on the left go to or
come from the environment. Note that none of the clocking
signals are shown.

The datapath has three buses, a register file containing 32
registers, and numerous support registers and latches. Two
buses, A and B, are connected to the output ports on the register
file and system registers. The C bus is connected to the input
port on the register file and the system registers. In addition,
the interrupt vector is attached to the B bus through a special
port to the interrupt controller.

The A and B buses feed the inputs to the ALU through two
latches. The memory buffer register can also serve as the A
input to the ALU through a multiplexor on the ALU input.
The ALU performs simple arithmetic and boolean operations
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