
54 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44. NO. I . JANUARY 1995

Formal Modeling and Verification of Microprocessors
Phillip J. Windley

Abstruct- Formal verification has long been promised as a
means of reducing the amount of testing required to ensure cor-
rect VLSI devices. Verification requires at least two mathematical
models: one that describes the structure of a computer system
and another that models its intended behavior. These models
are called specijkations. Verification is a mathematical analysis
showing that the behavior follows from the structure. Formal
verification of microprocessor designs has been quite successful.
Indeed, several verified microprocessors have been presented in
the literature, and one microprocessor where formal modeling
has been applied is commercially available. These efforts were
virtuoso performances-largely academic exercises carried out
by experts in logic and specification.

This paper presents a methodology for microprocessor verifica-
tion that significantly reduces the learning curve for performing
verification. The methodology is formalized in the HOL theorem-
proving system. The paper includes a description of a large case
study performed to evaluate the methodology.

The novel aspects of this research include the use of abstract
theories to formalize hardware models. Because our model is
described using abstract theories, it provides a framework for
both the specification and the verification. This framework re-
duces the number of ad hoc modeling decisions that must be
made to complete the verification. Another unique aspect of
our research is the use of hierarchical abstractions to reduce
the number of difficult lemmas in completing the verification.
Our formalism frees the user from directly reasoning about the
difficult aspects of modeling the hierarchy, namely the temporal
and data abstractions.

We believe that our formalism, coupled with case studies and
tools, allows microprocessor verification to be done by engineers
with relatively little experience in microprocessor specification
or logic. We are currently testing that hypothesis by using the
methodology to teach graduate students formal microprocessor
modeling.

I . INTRODUCTION

OMPUTERS are being used with increasing frequency C in areas in which the correct implementation of the
computer hardware is critical. Testing has traditionally been
used to exclude faults in computers; however, the effectiveness
of testing is limited by the combinatorial explosion inherent in
any testing technique. The limitations of testing, coupled with
the ever-increasing size of VLSI devices, have led to a search
for alternatives to testing, such as mathematical modeling and
analysis.

Manuscript received July 29, 1991; revised December 2, 1992; July 28,
1993. This work was supported by NASA under Space Engineering Research
Center Grant NAGW-I406 and under Boeing Contract NASI-18586, Task
Assignment No. 3. with NASA-Langley Research Center.

The author is with the Laboratory for Applied Logic, Department of
Computer Science. Brigham Young University, Provo, UT 84602-6576 USA;
E-mail: windley@cs.byu.edu.

IEEE Log Number 9407556.

Formal models of VLSI designs are usually called specijica-
tions; specifications provide a concise description of the behav-
ior of the device that can be used by design engineers, layout
technicians, production engineers, test engineers, technical
writers, and users. The application of symbolic mathematical
analysis to these models is usually called verification.

Verification is largely an exercise in demonstrating that
a design has certain properties. The primary property that
concems us is functional correctness; that is, showing
that a design has an intended behavior. This paper is
largely concemed with verifying functional correctness,
but other work by the author has been aimed at using
specifications to demonstrate, for example, the integrity
of supervisory mode i n a RISC-like microprocessor [20]
and the correctness of rules used in instruction stream
reordering [22].

Correctness verification uses at least two descriptions of
a system: one that describes how the circuit is constructed,
called the structural specification, and one that describes
what the circuit is supposed to do, called the behavioral
specijication. Correctness is shown by demonstrating through
mathematical proof that the former implies the latter. Design
faults are discovered as part of demonstrating correctness and
are corrected as the verification proceeds. Thus, verification
can be viewed as part of the design process itself, not as an ex
post facto process that gives a seal of approval. Typically, some
sort of mechanical proof tool is used in conjunction with the
verification to reduce the tedium associated with manipulating
large specifications.

Treating microprocessor design formally can be a difficult
task. Avra Cohn, in 161, describes her specification of VIPER’s
EBM from informal descriptions supplied by VIPER’s design-
ers as follows:

VIPER’s top-level specification and its major-state level
were both supplied in a logical language; but its block-
level model was given partly formally and partly pictori-
ally (as was natural). Combining these two parts required
both ingenuity and some guesswork. The guesses were
based on the coincidence of line names, on the names
of bound variables in the functional detinitions, and
on the annotations in the text of the definitions. None
of these notational devices can be regarded as formal
specific ation.

This statement not only describes the difficulties of developing
formal specifications from the kinds of informal descriptions
commonly in use, but it also alludes to the inadequacies of
those descriptions. After the specification is complete, verify-
ing that the implementation meets the behavioral specification

0018-9340/95$04.00 0 1995 IEEE

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

mailto:windley@cs.byu.edu

WINDLEY: FORMAL MODELING AND VERIFICATION OF MICROPROCESSORS

is equally arduous, sometimes requiring the proof of hundreds
of multipage theorems.

Every microprocessor verification done to date has been a
virtuoso performance, carried out by experts in logic, spec-
ification, and mechanical reasoning. In contrast to this, we
are striving to make microprocessor verification a viable tool
for VLSI design engineers. To that end, this paper presents a
methodology for verifying microprocessors. This methodology
is embodied in a formalism for the HOL theorem prover,
providing tool support for a step-by-step approach to system
verification. In addition, we have produced several case studies
and are working on additional examples of verified systems
for use in instructing engineers in microprocessor verification.
The latter part of this paper presents a case study of the
specification and verification of a microprocessor using our
methodology.

Organizcition of the Paper: This paper consists of two
parts. In the first part, Section I1 presenrs a brief introduction
to the HOL theorem proving system, Section 111 contains a
mathematical model of interpreters, and Section IV contains
a formalization of that model in the HOL theorem-proving
system.

The second part of the paper demonstrates the use of
the model in a case study involving the specification and
verification of a microprocessor called AVM-1. Section 5
presents an introduction to AVM-1, Section VI contains the
hierarchical specification of AVM-I in HOL, Section VI1
presents the verification of AVM-I , and Section VI11 presents
our observations about the case study.

11. A BRIEF INTRODUCTION TO HOL

To ensure the accuracy of our specifications and proofs,
we used a mechanical verification system to develop them.
The mechanical system performs syntax and type checking
of the specifications and prevents the proofs from containing
logical mistakes. The HOL system was selected for this project
because it has higher order logic, generic specifications, and
polymorphic type constructs. These features directly affect the
expressibility of the specification language. Furthermore, HOL
is widely available, robust, and has a growing international
user base. However, nothing in our work requires that the
HOL theorem-proving system be used.

HOL is a general theorem-proving system developed at the
University of Cambridge [3, 81 that is based on Church’s
theory of simple types, or higher order logic [4]. Although
Church developed higher order logic as a foundation for
mathematics, it can be used for reasoning about computational
systems of all kinds. Similar to predicate logic in allowing
quantification over variables, higher order logic also allows
quantification over predicates and functions, thus permitting
more general systems to be described.

HOL is not a fully automated theorem prover, but, it is more
than simply a proof checker; it serves a\ a proof assistant. HOL
has several features that contribute to its use as a verification
environment.

Several built-in theories, including booleans, individuals,
numbers, products, sums, lists, and trees. These theories

55

build on the five axioms that form the basis of higher
order logic to derive a large number of theorems that
follow from them.
Rules of inference for higher order logic. These rules
contain not only the eight basic rules of inference from
higher order logic, but also a large body of derived
inference rules that allow proofs to be done using larger
steps. The HOL system has rules that implement the
standard introduction and elimination rules for Predicate
Calculus as well as specialized rules for rewriting terms.
A large collection of tactics to support goal-directed
proof. Included in HOL are tactics that rewrite a goal
according to some previously proven theorem or defini-
tion, remove unnecessary universally quantified variables
from the front of a goal, and split equalities into two
implicative subgoals.
A proof management system that records the state of an
interactive proof session.
A metalanguage, ML, for programming and extending
the theorem prover. Using the metalanguage, tactics can
be combined to form more powerful tactics, new tactics
can be written, and theorems can be aggregated to form
new theories for later use. The metalanguage makes the
verification system extremely flexible.

For the most part, the notation of HOL is that of standard
logic: V.3,A,V, etc. have their usual meanings. A few con-
structs deserve special attention because that are used in this
paper.

HOL types are identified by a prefixed colon. Built-
in types include :boo1 and :num. Function types are
constructed using -+. HOL is polymorphic; type variables
are indicated by a type names beginning with an asterisk.
The HOL conditional statement, written a h I c,
means “if a, then b, else c”.
The HOL list containing elements a , b , c , and d is
represented as [a ; b ; c ; d] . A list that contains elements
with type x has the type : (x) list, where x can be
any valid type (including type variables since HOL is
polymorphic).
EL is a curried function that accepts two arguments, a
number, n, and a list, and returns the rith member of the
list.
Tuples are formed using a comma. Parentheses are only
required when the scope of the comma is ambiguous.
The function FST returns the first member of a tuple and
S N D returns the second.
The construct let v l = expr l and v2 = expr2
and . . . i n simultaneously defines local variables v l ,
v2, etc. with values expr L , expr2, etc.

111. FORMAL MICROPROCESSOR MODELING

Numerous efforts have been made to formally model mi-
croprocessors. The best known of these include J. Joyce’s
Tamarack microprocessor 1121, W. Hunt’s FM8501 micro-
processor [lo], and A. Cohn’s VIPER microprocessor [51.
Tamarack is a simple microprocessor with only 8 instructions.
FM850I is larger (roughly the size of a PDP-I 1) but has

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

56 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. I , JANUARY 1995

not been implemented (a 32-bit version has been verified and
implemented by Hunt et al. 11 11). Perhaps the most interesting
of these is VIPER, since even though VIPER is signifi-
cantly simpler than today’s general-purpose microprocessors,
its verification provides a benchmark of the state-of-the-art in
microprocessor verification.

VIPER was designed by Britain’s Royal Signals and Radar
Establishment (RSRE) at Malvem to provide a formally ver-
ified microprocessor for use in safety critical applications; it
is commercially available. VIPER is the first microprocessor
intended for commercial use where formal verification was
used. However, the verification has not been completed be-
cause of the large number of instruction cases and the size of
the proofs in each of the cases. This is not to say that the proof
could not be completed, but that it could be carried out only
at great expense. Recent work on hierarchical specification
[181, coupled with the work presented here, has overcome
the problems that faced the VIPER verification team, and
microprocessors significantly more complicated than VIPER
are now within the realm of formal treatment. The case study
in Sections V-VI1 is one example.

The specifications for the microprocessors mentioned above
appear very different on the surface; in fact, the specification
for FM8501 is even in a different language than the specifica-
tions of Tamarack and VIPER. On closer inspection, however,
we find that each of them (as well as many others) use the
same implicit behavioral model. In general, the model uses a
state transition system to describe the microprocessor. We call
this model an interpreter.

The essence of verification is to relate mathematical models
at different levels of abstraction. The rest of this section
gives a mathematical definition of the interpreter model and
shows how two interpreters are related. In the discussion that
follows, and for the rest of the paper, we speak of the “abstract
level” and the “concrete level,” but these terms are relative;
as we move up and down a hierarchy of interpreters, what
we call “abstract” at one level will be termed “concrete” with
respect to the level above it. As a matter of convention, we
will decorate variables that represent the concrete level with
primes.

A. Basic Zypes

The basic types for our model are shown in Table I. In
addition to these basic types, we also use the following type
constructors: product, written (a x 0); coproduct, (or
sum) written (a + p) ; and function, written ((2 -+ 0). An
n-tuple is indicated by (a1 x a2 x . . . x a,-1 x a,).

B. State
At times it is convenient to treat state as an object of type

S, where S is uninterpreted. This allows us to treat state in
an abstract manner, even though we may know nothing of its
structure or content.

Eventually, we will provide interpretations for S to model
a specific machine. To provide such an interpretation, we
represent state using n,-tuples. We let be the domain of

TABLE I
BASIC TYPES FOR INTERPRETER DEFINITION

{true, false}

M N - + B stores

i i i
0 0 0 0 0 0 0 0 0

t; t j t ; 1; 1; t:- t; t; tio

F F F T F T T F T

Fig. 1 . The function, 7, which maps time at one level to another, can be
defined in terms of a predicate, G, which is true only when the mapping occurs.

n-tuples representing state. These n-tuples have the type

(a1 x a2 x . . . x an-l x a,)

where

Whether or not S is interpreted, we write S 5 S’ to indicate
that S is an abstraction of S‘. When S is an abstraction of S’
there exists a function, S:S’ + S. The function S is called
the state abstraction function.

C. Time

In general, different levels in the interpreter hierarchy have
different views of time. A temporal abstraction function maps
time at the abstract level to time at the concrete level [9] ,
[12], 1151. Fig. 1 shows a temporal abstraction function, 3.
The circles represent clock ticks. Notice that the number of
clock ticks required at the concrete level to produce one clock
tick at the abstract level is irregular.

The temporal projection, 3, can be defined recursively
on time. We define F in terms of a predicate, E, which is
true whenever there is a valid abstraction from the concrete
level to the abstract level. In a microprocessor specification,
G is usually a predicate that indicates when the lower level
interpreter is at the beginning of its cycle-a condition that
is easy to test.

The function 3 is defined recursively so that F(G.0) is
the first time that 4 is true and F(G,(n + 1)) is the next
time after time n when S is true. The resulting function is
monotonically increasing. We use N to represent time. Thus,
we define F:(N + B) x N -+ N such that

\in m . (7 ~ > m) =+ (.F(S. n) > F(G> m))

We refer the interested reader to the references given above
and to 1171 for the details of the temporal abstraction function.

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

WINDLEY: FORMAL MODELING AND VERIFICATION OF MICROPROCESSORS 51

D. State Streams

A state stream, U, is a function from time to s ta te ,~N -+ S.
We have chosen n-tuples of booleans, bit-vectors, and stores
to represent state. The application of a stream to some time,
t , yields an n-tuple representing the state at time t. We use a
lambda expression for our concrete representation.

where

t l i . a , E N + (T + B + M)

An important part of our theory is the abstraction between
state streams at different levels. State stream u is an abstraction
of state stream u’ (written (u 5 u’) if and only if

1) each member of the range of ’u is a state abstraction of
some member of the range of u’, and.

2) there is a temporal mapping from time in u to time in u’. ,
There are two distinct kinds of abstraction here: the first is a
data abstraction; the second is a temporal abstraction.

Using the state abstraction function, S, and the tempo-
ral abstraction function, F, we define stream abstraction as
follows

Interpreters are state transition systems. An interpreter, 1,
is a predicate defined in terms of a 3-tuple, 3. IC, C, where
3 . K , and C are defined as follows.

Let J be the set of all functions with domain (S x E)
and codomain S. Not all functions in J are meaningful;
the specifier’s job is to choose meaningful functions. We
use a subset of J to represent the instruction set;‘we call
this set 3. The functions in 3 provide a denotational
semantics for the instructions that they represent.
In order to uniquely identify each instruction in 3, we
associate it with a unique key. At the abstract level,
we take keys from the uninterpreted domain, K. At the
concrete level, keys can have various representations, as
we will see in the example in Section 6. We must be
able to choose instructions from 3 according to some
predefined selection criteria. The selection is based on
the current state and environment. We define K to be a
function with domain (S x E) and codomain K.
We define C J to be a choice function that has domain K
and codomain (S x E -+ S). C z selects the state transition
function from J that is associated with key K.

We define an interpreter, Z[s, e] , as a predicate over the state
stream, s, and the environment stream, e. The definition of Z
is given as

I[.$, e] E Vt:N . st+l = N(st, e t)
71 5 U’ E 3(S:S’ -+ S) . 3 (F : N -+ N) . S o U’ o F u

where o denotes function composition.

E. Environments

The environment represents the external world; it plays
an important part in our theory. The environment is where
interrupt requests originate, reset signals are generated, and
so on. In our model, the environment is used only for input;
output to the environment is assumed to be simply a function
of the state and environment.

At the abstract level, we treat the environment as an
uninterpreted type. We know nothing about its structure or
content. We denote it as E. Just as we defined S , the state
abstraction function, we define an environment abstraction
function, E , such that €:E’ -+ E. When we provide an
interpretation for E , we represent the environment using n-
tuples of booleans and bit-vectors.

We perform the same kinds of abstraction on the environ-
ment as on states. Temporal abstraction is performed as it was
for states. We define abstraction for environment streams in
the same manner as we defined it for state streams. Thus we
write e 5 e‘ when e is an stream abstraction of e’ and define
stream abstraction for environment streams as follows:

e 5 e’ E 3(E:E’ + E) . 3 (F : N -+ N) . E o e’ o F = e

F. The Interpreter Specijcation

The preceding parts of this section have given preliminary
definitions for concepts that are important in the mathematical
definition of interpreters. This section presents that definition.

where

and

kt = K (s t , e t)

In this equation, st (et) is the state (environment) in the
state (environment) stream s(e) at time t. The predicate, I,
constrains the state of the interpreter at time t + 1 to be
a function, N , of the state and environment at time t. The
function is determined by applying the choice function, Cz, to
the key retumed by K for the state and environement at time t .

G. Interpreter VeriJication

Our goal is to prove a correctness relation between the
interpreters at different levels of a microprocessor abstraction.
In particular, for two interpreters, 1, and It, we wish to show
that

L[-?,, em] * &[se, eel

where s,(e,) is the state (environment) stream at level m
and se (e t) is the state (environment) stream at level e . By
definition, we require that st 5 s, and et 5 e,.

When this implication is true, 1, is an abstraction of 2,
and I,,, is said to implement It.

The correctness theorem above follows from the following
lemma: P‘

V j ~ ~ . . ~ , (s m , e , ,) ~ (j = C z (l c t))
3 3~ 0 S m) (t + c) = j ((s 0 S m) t r (E 0 e m) t)

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

58

subenv
Imp1
count

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 1 . JANUARY 1995

:*env’+*env
: (t i m e ’ + * s t a t e ’) + (t i m e -+*env J) - + b o o l
: * s t a t e ’ + * e n v ’ +*kev

This lemma, which we call the instruction correctness lemma,
states that every instruction follows from the concrete inter-
preter, I,. Specifically, it says that for every instruction, j
in J , if j is selected, then applying j to the current abstract
state and environment, (S o s ~) ~ and (I o e,)t, yields the
same abstract state that results from letting the implementing
interpreter 1, run for c cycles.

The instruction correctness lemma suggests a case analysis
on the instruction set and ignores temporal abstraction, stating
only that there exists a time in the future when the states
correspond. This lemma plays an important role in the work
we describe next.

IV. A MODEL 01; INTERPRETERS IN HOL
The similarities in past microprocessor verifications can be

exploited to form 8 methodology for microprocessor verifi-
cation in general. To make this information usable, we have
formalized the microprocessor specification model in the HOL
mechanical theorem-proving system. The formalization does
several things.

1) The formalization provides a step-by-step approach to
microprocessor specification by enumerating the impor-
tant definitions that need to be made for any micropro-
cessor specification.

2) Using the formalization, the verification tool can derive
the lemmas that need to be verified from the specifica-
tion.

3) After these lemmas have been established, the verifi-
cation tool can use the formalization to automatically
derive the final result from the lemmas.

To formalize the model developed in the last section, we use
abstract theories. The next section discusses abstract theories
and how they can be used to formalize mathematical models.
The remaining sections discuss the parts of the generic model.

A. Abstract Theories

A theory is a set of types, definitions, constants, axioms and
parent theories. Logics are extended by defining new theories.
An abstract theory is parameterized so that some of the types
and constants in the theory are undefined inside the theory
except for their syntax and an algebraic specification of their
semantics. Group theory provides an example of an abstract
theory: the multiplication operator is undefined except for its
syntax (a binary operator on an uninterpreted type) and a
semantics given by the axioms of group theory.

Abstract theories are useful because they provide proofs
about abstract structures which can then be used to reason
about specific instances of those structures. In groups, for
example, after showing that addition over the integers satisfies
the axioms of group theory, we can use the theorems from
group theory to reason about addition on the integers.

There are two key components of an abstract theory: 1)
the abstract representation and 2) the theory obligations. The
abstract representation is a set of abstract objects and a set
of abstract operations. The operations are unspecified; that
is, we don’t know (inside the theory) what the objects and
operations mean. Their partial meaning is specified through the

TABLE I1

FOR THE GENERIC INTERPRETER MODEL
THE ABSTRACT FUNCTIONS AND THEIR TYPES

Operation I Type
i n s t r u c t i o n s I :(*kevx(*state-t*env+*state))list
select I : * s t a t e - - + * e n v + * k e y
kev I :*kev-+num
s u b s t a t e I : * s t a t e ’ - + * s t a t e 1

b e g i n 1 : * k e y ’ I

theory obligations-a set of predicates that define relationships
among members of the abstract representation. The abstract
theory models any structure with objects and operations that
satisfy the predicates.

The theory obligations axiomatize the theory. Using the
obligations as axioms, we prove theorems of interest about the
abstract objects and operations. The goal is to use the abstract
theory to reason about specific objects by instantiating the
abstract theory with a concrete representation that has been
shown to meet the obligations. The instantiation specializes
the abstract theorems, producing a set of theorems about
the concrete representation. The concrete representation is an
instance of the abstract theory and represents a member of the
class of abstract objects that the abstract theory describes.

HOL, the verification environment used in the research
reported here, does not explicitly support abstract theories;
however, HOL’s metalanguage, ML, combined with higher
order logic, provides a framework sufficient for implementing
abstract theories [2 11. Several specification and verification
systems, such as EHDM [161, offer explicit support for abstract
theories.

B. The Abstract Representation

We specify the abstract representation for the generic inter-
preter model by defining a list of abstract types and operations.
Table I1 shows the operations and their types.

When compared with the mathematical description given in
the last section, the formalization in HOI, is more operational,
largely for efficiency reasons. As an example, we will use
lists, rather than sets, to describe the instruction set. HOL can
express choice on sets, but the resulting proofs are consider-
ably more difficult than similar proofs about lists. Certainly
the readability of specifications is an important problem;
most microprocessor specifications are difficult enough to read
without unneeded details. Current work by the author and
others is addressing these notational problems. Our ultimate
goal is specifications that are readily readable as well as
practically verifiable.

Before describing the abstract representation, we must em-
phasize that the representation is abstract, and thus the types
and operations have no definitions. The descriptions that
follow are what we intend for the representation to mean.
The representation is purely syntactic, however: the names
are simply convenient mnemonics.

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

WINDLEY: FORMAL MODELING AND VERIFICATION OF MICROPROCESSORS 59

The following abstract types are used in the representation.
: *state represents the state and corresponds to S from
the last section.
: *eriv represents the environment and corresponds to E
from the last section.
: *key is type containing all of the keys and corresponds
to K from the last section.

In addition to these abstract types, the representation makes
use of several concrete types: : time, : num, and : bool. The
1 i s t and 4 (function) type constructors are used as well. We
add primes to the types to indicate that they represent state,
time, etc., at the concrete rather than the abstract level of the
hierarchy.

The abstract representation is divided into three parts. The
first contains those operations concerned with the interpreter
proper.

instructions represents the instruction set, which
is represented by a list. Each member of the list is an
instruction that associates a key with * a state transition
function. Throughout the rest of the paper, we make
use of two selector functions, KEY and IFUNC, which
respectively select the key and state transition function
from an instruction. instructions corresponds to 3
from the last section.
select represents the function that selects a key based
on the present state and environment. select corre-
sponds to K from the last section.
key maps an object of type : *key to a number. This
number is used to index the list containing the instruc-
tions. key is used in conjunction with the EL function
(which selects the nth member of a list) to implement C
from the last section.

The second part contains the abstraction functions that relate
the state and environment at the concrete level to the state and
environment at the abstract level.

substate is the state abstraction function for the inter-
preter. The domain of subst at e is primed indicating
that it is from the concrete level. substate corresponds
to S from the last section.
subenv is the environment abstraction function similar
to substate. subenv corresponds to I from the last
section.

Because we want to prove correctness results about the in-
terpreter, we must have an implementation to verify the
interpreter against. The third part of the abstract representation
contains three functions that provide the necessary abstract
definitions lor the implementation.

Imp1 is the abstract implementation. We could have
chosen to make this function more concrete and define it
as we do the interpreter, but doing so would require that
every implementation be an interpreter or at least have
some pre-chosen structure. As we see in the example, the
implementation need not be modeled as an interpreter at
all. Thus we say nothing about it except to define its type;
its structure and operation are completely unknown.
count is analogous to select except it operates at
the concrete level. Notice that it uses the state and

environment at the concrete level to produce a key for
the concrete level.
begin denotes the beginning of the implementation
clock cycle.

The functions count and begin are used to implement the
predicate G that indicates when time at the concrete and
abstract levels correspond.

We must emphasize once again that even though we have
spent several paragraphs defining what each of the members
of the abstract representation mean, they are truly abstract
and have no meaning in the formal model other than the
relationships that are defined in the theory obligations.

C. The Theory Obligations

Theory obligations represent the semantics of the generic
model. Inside the model, the only thing we know about the
abstract representation presented in the last section is what the
theory obligations say about it.

To prove the correctness result, we must know something
about the implementation. Since the implementation is a
member of the abstract representation, nothing is known about
it except the requirements given in the theory obligations.
Proving that the implementation implies the interpreter def-
inition is typically done by case analysis on the instructions;
we show that when the conditions for an instruction’s selection
are right, the instruction is implied by the implementation. We
call this the instruction correctness lemma.

The predicate INSTRUCTION-CORRECT expresses the
conditions that we require in the instruction correctness lemma.
INSTRUCTION-CORRECT is a good example of the kind of
information that is captured in the generic model. Previous
microprocessor verifications created this lemma, or one similar
to it, in a largely adhoc manner. INSTRUCTION-CORRECT
expresses the correctness condition for a single instruction,
namely that under certain conditions it follows from the
definition of the more concrete implementation.

The complete definition of INSTRUCTION-CORRECT is
given below:
kdef INSTRUCTION-CORRECT s’ e’ inst =

let s = (A t . (substate (s’ t))) in
let e = (A t . (subenv (e’ t))) in
let g = (A t . (count (s’ t) (e’ t)

= begin)) in (

(Imp1 s‘ e’) 3
(V t: time‘.

(select(s t) (e t)= (KEY
(count(s’ t) (e’ t)= beg

3 c. Next g (t,t+c) A
((IFUNC inst) (s t) (e t

= (s (t + c))))).
In the definition, s ‘ (e) represents the state (environment)

stream at the more concrete level; s (e) is the state
stream (environment) at the abstract level and is derived from
s ‘ (e ’) using the function substate (subenv) . The
predicate g is the predicate D of Fig. 1 . Recall that 0 was
true whenever the states in the concrete and abstract levels
corresponded. In our model this happens whenever the counter

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

60 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. I , JANUARY 1995

in the implementation (denoted by count (s ’ t) (e ’ t))
is at the beginning (denoted by begin). Recall that KEY and
I F U N C are the selectors for the key and instruction function
respectively.

INSTRUCTION-CORRECT states that the implementation
implies that for every time, t, if inst is selected and the
implementation’s counter is at the beginning, then there exists
a time c cycles in the future such that applying the instruction
to the current state yields the same state change that the
implementation does in c cycles.

Using INSTRUCTION-CORRECT we can define the theory
obligations:
EVERY (INSTRUCTION-CORRECT S ’ e ’)

instruct ion.;
k:*key . (key k) < (LENGTH
inst ruct ions)

V k:*key . k = (KEY (EL (key kj
instructions)) .

The first obligation says that every instruction in the list
of instructions, instruct ions, satisfies the predicate I N -
STRXTION-CORRECT. The second obligation says that ev-
ery key maps to some location in the instruction list. The third
obligation says that the abstract function key maps a key to
the instruction with which it is associated (Le., that the list of
instructions is ordered correctly).

The obligations are used in two ways. First, they are
used axiomatically in proving the correctness result; we do
this in the next section. Second, the obligations form a set
of necessary and sufficient conditions for showing that the
implementation meets its specification. In the second case, they
are the properties that users of the model must prove about an
instantiation; we show this in Section VI. At first the theory
obligations may seem like an additional proof burden, but in
fact, they are typical of the lemmas that have to be proven
in any microprocessor proof. More to the point, the theory
obligations provide a method for deriving the proof obligations
from the specification. Without the theory obligations, these
lemmas would be amved at in an ad hoc fashion.

D. The Currectness Statement

One of the important parts of the collection of abstract the-
orems is the definition of a generic interpreter. The definition
is based on functions from the abstract representation.
kdef INTERP s e =

V t: time
let inst = EL (key (select (s t)

s(t + ? j = (IFUNC inst) (s t) (e t)
The specification of an interpreter is a predicate that relates

the contents of the state stream at time 1 + 1 to the contents
of the state stream at time t . The relationship is defined using
the functions from the abstract representation.

The correctness result can be proven from the definition of
the interpreter and the theory obligations as follows:
t- let g = (A t: time(count (s’ t) (e’ t)

(e t))) instructions in

= begin)) in

let :3 = (substate o s’ o abs) <ind
15 = (subenv o e‘ o abs) (

(Imp1 s‘ e ‘) A

I N T E 3 P s e)
(3 t . g t) =3

The correctness statement says that if the implementation is
valid on its state and environment streams and there is a time
when the concrete clock is at the beginning of its cycle, then
the interpreter is valid on its state and environment streams.

This theorem is remarkably similar to the requirement for
correctness developed in Section 111-G. The function abs is
analogous to 3 and is defined in terms of a general temporal
abstraction function TempAbs using the predicate g.

(e ‘) is the state (environ-
ment) stream in the implementation. The term (substate
o s’ o abs) ((subenv o e’ cs abs)) is the state
(environment) stream for the interpreter defined i n the model.
Thus by definition, s (e) is a data and temporal abstraction
of s’ (e’) and s 5 s’ (e 5 e‘).

There is one major difference between this correctness
statement and the one given in Section 1114, the additional
prerequisite that there exists at least one time when the
predicate g is true. This requirement is a reset requirement
that ensure liveness. The fact that it shows up here and not
in the less formal statement is an example of the utility of
mechanical verification: there are no hidden assumptions.

The result in this section is a correctness statement for
a generic interpreter model. The model defines a class of
computational objects. The correctness result is a verification
of every microprocessor that matches the semantics defined in
the model; that is, once a microprocessor is shown to meet the
theory obligations of our model, this correctness result applies
to it without further work.

The most important benefit of the generic model is that it
structures the proof. A generic model states explicitly which
definitions must be made (one for each of the members of the
abstract representation) and which lemmas need to be proven
about these definitions (namely, the three theory obligations).
This is a great improvement over previous microprocessor
verifications in which these decisions were made on an ad
hoc basis.

In the correctness statement, s

V. AVM-1

We have designed and verified a computer designated AVM-
1 (A Verified Micruprucrssur) to serve as a test-bed for
microprocessor verification. For a more detailed look at the
architecture and organization of AVM-1, see [171.

Our design is the result of an attempt to build a mi-
croprocessor that is at once verifiable. implementable, and
usable. We have been influenced by our own experience in
verifying microprocessors 1 1 81, the experience of others [5] ,
[121, and our desire to provide hardware features in support of
operating systems; such features include interrupts, memory
management, and supervisory modes. AVM-1 is part of a
verified chip set being designed and verified by the Computer
Systems Verification Group at the University of Califomia,
Davis. Other commnents of the svstem include a memow let abs = (?‘empubs g) Ln _ _ .- .

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

WINDLEY: FORMAL MODELING AND VERIFICATION OF MICROPROCESSORS

opcode

61

dest ’ unused

TABLE 111
THE PROGRAM STATUS WORD

Last ALU result was zero
Last ALU operation caused a carry
Last ALU result was negative
Last ALU operation caused a overflow
Interrupts enabled
In supervisory mode

management unit, a floating point unit, an interrupt controller,
and a direct memory access chip.

A. The Architectural View

A computer’s architecture is its programming interface; an
architecture describes a language and how that language is
interpreted. The language definition contains a specification
of the computer’s state and the instructions available for
manipulating that state. The architecture must also define how
instructions are selected.

The Registers: AVM- 1 has a load-store architecture based
on a large register file. The register file is divided into three
portions:

1) register 0, which is read-only and contains the constant
0;

2) seven supervisor-mode registers, including a distin-
guished register for use as the supervisor stack pointer
(SSP 1. The supervisor-mode registers are read-only
unless the CPU is in supervisor-mode (determined by
the state of the 6th bit in the program status word);

3) twenty-four general-purpose registers.
Two additional registers are visible at the architectural level:

the program counter and the program status word. The program
counter (PC) is used to sequence the computer-it indicates
which instruction to execute next. The program status word
(P S W) is used to keep track of the status of the last ALU
operation, whether or not interrupts are enabled, and the
privilege level of the CPU. Table 111. shows the meaning of
the 6 bits in the program status word.

The Instruction Set: The instruction set contains 30 instruc-
tions. The instruction set for AVM- 1 was inspired by the RISC
I instruction set found in Katevenis [141; it is a load-store
architecture, meaning that most instructions are not, allowed
to access memory for their operands. The instruction formats
are simple and regular.

The 30 programming level instructions include the follow-
ing:

8, 3-argument arithmetic instructions
8, 2-argument arithmetic instructions that use a 16-bit
immediate value
4 instructions for loading and storing registers
10 instructions for performing user interrupts, jumps,
subroutine calls, and shifts.

The Instruction Format: The instruction formats are simple
and regular. Fig. 2 shows the four instruction formats. All the
formats use the same opcode field.

Format 1:
31 25 20 15 10 n

1 opcode dest 1 A 1 B 1 unused 1
Format 2:
31 25 20 15

Fopcadeldrhl ’ A 1 imrnediate ’1

Format 4:
31 25 n

1 opcodel unused I
Fig. 2. The instruction formats in AVM-I

In formats 1 and 2, the instruction is divided into four fields.
The top 6 bits (31-26) give the opcode of the instructions.
The next 5 bits (25-21) denote the destination register in most
operations. The third field (bits 20-16) selects the register used
as the A operand in most operations. In format I , the fourth
field is composed of bits 15-1 1 and is used to select the register
used as the B operand. In format 2, the fourth field uses all
of the 16 remaining bits to form an immediate number (0 to

Format 3 is identical to formats 1 and 2, except that only
the opcode and destination fields are used. Format 4 uses only
the opcode field.

There is a trade-off between instruction format complexity
and verification effort, so in general the instruction format
should be kept as simple as possible. A regular instruction
format, while not essential to verification, can greatly reduce
the amount of detail that must be dealt with in the proof.

(216 - 1)).

B. The Organizational View

The implementation of AVM-I can be divided into two
major parts: the datapath and the control unit. We will briefly
describe the datapath and discuss the timing issues that affect
AVM- 1’s control unit.

The AVM- 1 Datapath: The AVM- 1 datapath is loosely
based on the AMD 2903 bit-sliced datapath [I] shown in
Fig. 3. The signals shown at the right-hand side of the figure
connect to the control unit. The signals on the left go to or
come from the environment. Note that none of the clocking
signals are shown.

The datapath has three buses, a register file containing 32
registers, and numerous support registers and latches. Two
buses, A and B, are connected to the output ports on the register
file and system registers. The C bus is connected to the input
port on the register file and the system registers. tn addition,
the interrupt vector is attached to the B bus through a special
port to the interrupt controller.

The A and B buses feed the inputs to the ALU through two
latches. The memory buffer register can also serve as the A
input to the ALU through a multiplexor on the ALU input.
The ALU performs simple arithmetic and boolean operations

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

62

cond cn t l

I J r - ,

carry src

, Shift Function
Shifter

Fig. 3. The AVM-I datapath

on the values on its A and B inputs. The results of the ALU
operation are fed to the shifter which can perform logical and
arithmetic shifts. The result from the shifter is put onto the C
bus for distribution. In addition to a result, the ALU produces
a set of status bits (negative, zero, carry, and overflow) that
are directly saved in the program status word.

Timing: Rather than describe the control unit of AVM-1
in detail, we concentrate on the timing behavior since that
is the most important feature for understanding what is to
follow. The control unit establishes this timing. The timing of
AVM-I is based on a four-phase clock as shown in Fig. 4.
During the four phases, the machine performs the following

transitions.
In phase 1, the microinstruction register is loaded from
the micro-rom.
In phase 2, the latches that feed the ALU are loaded
from the register file and system registers.
In phase 3, the results from the ALU and shifter are
calculated. In addition, the MAR can be loaded from
the PC in this phase.
In phase 4, the result calculated in phase 3 is stored in
the register file and system registers.

VI. SPECIFYING AVM- 1
Presenting the complete specification and verification of

AVM-1 is beyond the scope of this paper. This section shows

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. I . JANUARY 1995

t

Calculation u
Fig. 4. A phase diagram for AVM- 1.

Architectural Level

Interpreter

Fig. 5 .
ofinterpreters.

A microprocessor specification can be decomposed as a series

parts of the specification to demonstrate how writing the
specification is aided by the generic interpreter model.

The specification of AVM-I is hierarchical in nature and
uses four levels, as shown in Fig. 5. The bottom level, or
EBM, is a structural specification; we do not present it here. By
structural specification we mean a specification that describes
how the major components of the microprocessor, such as the
register file and ALU, are connected together. The structural
specification in HOL corresponds to the netlists commonly
used to describe circuits textually and is similar in form to the
structural descriptions of circuits written in VHDL or other
hardware description languages.

The specifications above the electronic block model are
behavioral specifications. Based on stale transition functions,
they specify what happens without describing how it happens.
The use of a single behavioral model (that is, the generic
interpreter model) to describe three different levels in the
microprocessor design may seem to be an instance of making
the problem fit the solution; however, modeling the various
levels of a microprocessor design in a uniform way is not
new (see [2]) . Describing the behavior of each level in
terms of state transitions modeled as instructions is quite
natural.

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

WINDLEY: FORMAL MODELING AND VERIFICATION OF MICROPROCESSORS 63

The descriptions of the three behavioral levels all follow TABLE IV
the pattem imposed by the generic model. The generic model
requires that we define each of the abstract operations in the
representation; the following abstract operations are defined in
each section: instructions, select, key, substate,
and subenv. The definitions of Impl, count, and begin
are defined as part of the specification of the lower level. We
divide each section into parts and define each of these abstract
operations’.

A. Specijjing the Architectural Level

The architectural level is the topmost specification in our
hierarchy- and is thus the most abstract. The architectural
level specification is a formal specification of what one would
generally find in a programmer’s manual for a micropro-
cessor. The specification describes the effect of each of the
architectural level instructions on the processor’s state and
defines how the instructions are selected. The major difference
between the formal specification of the microprocessor and
the programmer’s manual is that the formal specification is
unambiguous and concise.

This section provides definitions for thefollowing compo-
nents of the architectural level specification: the state-tuple;
three sample architectural level instructions (JMP, ADD, and
the external interrupt); the architecural operations correspond-
ing to the operations in the generic interpreter theory (select,
key, etc); and the architectural level interpreter.

Defining the Architectural Level State: We use a state-tuple
to describe the architectural level interpreter state.
(reg, psw, pc, mem, ivec)

The only state visible to the architectural level programmer
is the register file (reg), the program status word (psw), the
program counter (pc), the memory (mem), and the interrupt
vector (ivec).

Defining the Instruction List: The complete specification
for the architectural level is contained in [19]; here we
highlight three sample instructions.

The JMP Insfruction: The JMP instruction uses instruction
format 2 (see Table 11). In the JMP instruction, the first 5-
bit field IS used to specify the jump condition (only the least
significant 4-bits are used), the second 5-bit field specifies the
index of the register to use as a base address, and the 16-bit
immediate tield is used as an offset from the base value.

Behaviorally, the JMP instruction has a simple description.
The value of the program status word and the contents of the
destination field of the current instruction are used to determine
if a jump should occur according to the conditions in Table
IV. If so, the program counter is loaded with the sum of the A
register and the value of the immediate field from the current
instruction. Otherwise, the program counter is incremented.
kd,,f J M P (reg, psw, pc, mem, ivec) =

let a - EL (GetSrcA pc mem) reg and

JUMP CODES FOR THE JMP INSTRUCTION

i = GetImm pc mem and
d = GetDest pc mem in

let jump-cond = JUMP-COND d psw in
let new-pc = (jump-cond + (add(a, i))

(reg, psw, new-pc, mem, ivec)
I inc pc) in

The function GetSrcA retrieves the value of the A source
field from the word in memory that represents the current
instruction (as determined by the program counter). Get Des t
and Get Imm similarly retrieve the value of the destination and
immediate fields from the current instruction. The definitions
of these auxiliary functions are precise and available to readers
of the specification. The definition of JUMP-COND describes
the conditions under which a jump occurs and retums a
boolean value used in the calculation of the new value for
the program counter.

The ADD Instruction: The ADD instruction uses instruction
format 1. The ADD instruction adds the contents of the registers
selected by the A and B fields in the current instruction and
stores the result in the register selected by the destination
field of the current instruction. In addition, the program status
word is updated to reflect the results of the calculation, and
the program counter is incremented. The HOL specification is
given below:
kdef ADD (reg, psw, pc, mem, ivec) =

let a = EL (GetSrcA pc mem) reg and
b = EL (GetSrcB pc mem) req and
d = GetDest pc mem in

let result = add (a, b) in
let cflag = addp (a, b, result) and

vflag = aovfl (a, b, result) and
nflag = negp result and
zflag = zerop result and

ie = get-ie psw in

’ Note that the presentation that follows is not intended to be an engineering
document that presents the specification and analysis, but rather an expository sm = get-sm psw and
document that shows how microprocessors can be specified and verified. An
engineering presentation would differ considerably since the purpose of the
document would be to demonstrate the correctness of the design rather than
the utility of the model. result and

let new-reg = UPDATE-REG psw d reg

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

64 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 1. JANUARY 1995

new-psw = mk-psw (sm, i e , v f l a g ,

new-pc = i nc pc i n
nflag, c f l a g , z f l a g) and

(new-reg , new-psw, new-pc , mem, ivec)
Clearly there is more to an add instruction than just cal-

culating the new value and storing it in the right place,
although that is certainly the high point. The specification
unambiguously defines what state changes take place and
the definitions of auxiliary functions tell precisely how the
new state is calculated. For example, addp returns a boolean
result, indicating whether there was carry out, aovf 1 returns a
boolean result that is true when overflow has occurred, negp
determines if the result is negative, and zerop determines
whether the result was zero. Unlike some reference manuals,
the definitions of these functions are available for inspection
by readers of the specification. One can look at the definitions
of these functions and know exactly ho&, for example, carry
or overflow are calculated.

The EINT Instruction: The E I N T instruction describes the
behavior of the microprocessor upon an extemal interrupt. We
include the specification of the external interrupt in this paper
because it has interest both in its own right and in showing
how events not typically thought of as instructions can be
specified in our model.

The selection criterion for the external interrupt instruction
distinguishes it from the other instructions specified at this
level. Every other instruction is selected based on the value of
the opcode portion of the word in memory pointed to by the
program counter; the E I N T instruction is selected whenever
the external interrupt line in the environment is set. Because its
selection criterion differs substantially from that of the other
instructions (and because an assembly language programmer
would not really consider it an instruction) we term E I N T a
“pseudoinstruction.”

Every state variable in the architectural level state except
the interrupt vector is changed in the execution of the E I N T
instruction. The program status word is updated to enter
supervisory mode and disable further interrupts. The contents
of the program counter are pushed onto the supervisory stack,
the supervisory stack pointer (SSP) is incremented, and the
program counter is loaded with the 8 least significant bits of
the interrupt vector.
kdet EINT (r e g , psw, pc , m e m , i v e c) =

l e t cd = SSP-REG reg and
d = ssp-reg i n

l e t c f l a g = get-cf psw and
v f l ag = get-vf psw and
n f l ag = get-nf psw and
z f l a g = get-zf psw and
sm = T and
i e = F i n

l e t new-psw =
mk-psw (s m , i e , v f l a g , n f l a g ,

c f l a g , z f l a g) i n
l e t new-reg = UPDATE-REG new-psw d reg

(i n c cdj and
new-pc = band (lower-8-bitsI i vec)

and

newmem = s t o r e (mem, address cd,
pc) i n

(new-reg, new-psw, new-pc , newmem,
ivec) .

In the specification, SSP-REG selects the SSP register from
the register file; ssp-reg is a constant value used to avoid
arbitrary numbers in the specification (much as one tries to
avoid them in programming). Several other functions also bear
explanation: band is bitwise logical conjunction, address
coerces an n-bit word into an address, and s t o r e updates
a value in memory at a particular address. The constant
lower-8 _ b i t s is an n-bit word with integer value 256.

The Instruction List: Before defining the instruction list and
the selection function for the architectural level, we must
decide on a representation for the keys. The instruction’s
opcode seems particularly well suited to be used as the key
since it uniquely identifies the instruction and is a natural part
of the description of an assembly language. However, one
instruction, EINT, has no opcode. We could assign an unused
opcode to E l ” , but this raises the issue of what to do if
that opcode appears in a program, not to mention making the
architectural level model unverifiable.

We chose to represent the keys at the architectural level
using a coproduct of boolean five-tuples (:b t5) and the
type containing exactly one object (: one). Left injections on
the type represent real instructions and right injections repre-
sent pseudoinstructions. We chose boolean five-tuples because
there were approximately 32 instructions. There is only one
pseudoinstruction, so : one, the type with only one member,
was the logical choice for its representation. There was nothing
special about associating : one with the pseudoinstructions;
if there had been more than one pseudoinstruction, another
representation (such as boolean n-tuples) would have worked.

We now define the architectural level instruction list. Every
instruction uses the environment abstraction function to give it
the proper type. The keys readily distinguish between the real
instructions and the pseudoinstructions--clearly specifying the
opcodes associated with each real instruction.
t d e f a rch- ins t ruc t ions -

[(I N L (F , F , F , F , F) ,JMF);

(INL(T,F ,F ,F ,F) ,ADD);

(INR(one) , E I N T) ;
I .

Dejining se l ec t : The instruction selection function Op-
code uses the environment and the state to determine which
instruction to execute.
tde, Opcode (r e g , psw, pc, m e m , i vec)

(i n t - e , r e se t - e) =
(i n t - e A (ge t - i e psw)) -+

INR(one) 1
INL(opcode (f e t c h (mem, address

If the interrupt line in the environment is high and interrupts
are enabled, then the key associated with the external interrupt
instruction, I N R (one) , is returned. Otherwise, a left injection

P C))) .

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

WINDLEY FORMAL MODELING AND VERIFICATION OF MICROPROCESSORS

of the 5-bit opcode portion of the word in memory pointed to
by the program counter is returned.

Dejining key: To instantiate the generic interpreter model,
we must be able to turn a key into a number that indexes the
instruction associated with that key in the instruction list. The
function Opc-Val performs that task:
t d e f Opc-Val (x: (b t 5 + one) =

(ISL x) .--) (bt5-val (OUTL x))

The function determines whether its argument is a left or
right injection and then, for a left injection, uses b t 5-val
(which retums the integer value of a boolean 5-tuple) to return
the value. Because there is only one possible right injection,
we return 32 without any further work.

Defining subs ta te : Micro-Substate is the function
used to transform a micro-level state-tuple into the architec-
tural level state tuple shown above.
t-def Micro-Substate (r e g , psw, pc, m e m ,

I 32.

i vec , i r , mar, mbr, m p c) =

(r e g , PSW, PC, m e m ,
i vec) .

The instruction register (ir), memory address register
(mar), memory buffer register (mbr), and microprogram
counter (mpc), which are all visible at the micro-level,
are deleted from the micro-level state-tuple to produce the
architectural level state-tuple.

+Defining subenv: The environment is identical at the
architectural level and the micro-level; therefore, the subenv
function is represented using the built-in identity function, I.

Dejining Impl, c lock , and begin: The definitions of
Impl, clock, and begin are taken directly from the spec-
ification of the micro-level. Imp1 is the definition of the
micro-level interpreter. c lock is the microprogram counter
and begin is the starting location for the microprogram,
FETCHADDR.

Dejining the Architectural Level Interpreter: In Section IV,
we defined the generic interpreter, INTERP. The first argument
to INTERP is the representation. The representation tuple
contains the concrete functions that instantiate the abstract
operations from the abstract representation. We use the def-
initions from the previous sections to instantiate INTERP
and produce a top-level specification of the interpreter at the
architectural level. The instantiation is given in Table V.
k Arch-Int s e =

s (t + 1) =
I F'UNC
(EL (Opc-Val(0pcode (s t) (e t)))

(s t)
(e t) 1 .

(V t .

a rch - ins t ruc t ions)

B. Speczfving the Micro-Level

We do not present the details of the specification of the
micro-level interpreter because it is similar to the architectural
level interpreter. The final product of the specification is a def-
inition that looks much like the definition of the architectural

65

TABLE V
THE FUNCTIONS USED TO INSTANTIATE THE ABSTRACT REPRESENTATION OF

THE GENERIC INTERPRETER MODEL FOR THE ARCHITECTLRAL LEVEL

Opc-Val
select Opcode

level interpreter:
t-Micro-Int s e =

(V t .
s (t + 1) =

IFUNC (EL (bt6-val (G e t M P C (s t) (e t)))
micro-instruct i ons)
(s t)
(e t))

C. Specifiing the Phase-Level

The phase-level model is the behavioral representation of
AVM-1 from the standpoint of AVM-1's polyphase clock.
AVM-1 has a 4-phase clock that describes how each microin-
struction is executed. The term instruction does not really fit
at this level, but the idea of a state transition function does
and the description of the phase-level behavior by means of
the generic interpreter model is both natural and useful.

This section provides definitions for the following com-
ponents of the phase-level specification: the state-tuple, one
sample phase-level instruction (for phase two), the phase-level
operations corresponding to the operations in the generic inter-
preter theory (select, key, etc.), and the phase-level interpreter.

Dejining the Phase-Level State: The state-tuple that de-
scribes the phase-level interpreter state is shown below.

(r e g , psw, pc , m e m , i vec , i r , mar, mbr,
, mpc, a l a t c h , b l a t c h , ireq-f f , iack-f f ,

mir, urom, c l k)

The variables correspond to the registers, flip-flops, and
memories in the datapath shown in Fig. 3 .

Defining the Instruction List: The operation of the phase-
level interpreter is fairly simple. We associate each phase in the
system clock with an instruction in the phase-level interpreter.
The instructions define the state transitions that occur during
each phase of the clock. This same information is available
in the electronic block model, but is not as apparent there.
During the four phases, the machine performs the following
state transitions shown in Fig. 4 and described in Section V-
B-2. The formal definitions for these phases describe in detail
what happens in each phase. Due to space constraints, we
present only the definition of the second phase.

Phase-Two: During the second phase, the latches that feed
the ALU are loaded from the register file and system registers
according to the SrcA and SrcB fields in the microinstruction

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

66

Operation
i n s t r u c t i o n s
key
s e l e c t
subst a t e
subenv
Impl
count
beain

register. In addition, the interrupt acknowledge flip-flop is set
if the interrupt acknowledge field is set in the microinstruction
register. The clock is updated to select the third phase.
l-d,fphase-two (r e g , psw, pc , mem, ivec ,

i r , mar, mbr, mpc, a l a t c h ,

Instantiation
list of phase instructions
bt2-val
GetPhaseClock
The identity function, 1
The identity function, 1
EBM
GetEBMClock
EBMBezin

b l a t c h , ireq-f f , i ack
m i r , urom, c l k)

(i n t - e) =

l e t new-alatch = (
((SrcA m i r) = (F , F , F)) --f

((SrcA m i r) = (F , F , T)) -+

({SrcA m i r) = (F , T , F)) -+

(E L (reg- len (s r c a i r)

(E L (reg- len (d e s t i r)

(SSP-REG r e g) I

f f ,

r eg) I

r e g) I

((SrcA m i r) = (F , T , T)) -+ psw I
({SrcA m i r) = (T , F , F)) -+ (wordn 2 5 5)

I P C) i n
l e t newhla tch = (

(;SrcB m i r) = (F , F)) -+

((S rcB m i r) = (F , T)) -i

l e t new-iack-ff = Iack m i r and

(r e g , psw, pc , m e m , i vec , i r , mar, mbr,
mpc, new-alatch, new-blatch, i r e q - f f ,
new-iack-ff, m i r , urom, new-clk).

(E L (reg- len (s r c b i r)) r eg) I

(i n t - f e t c h ivec) 1 (i m m i r)) i n

new-clk = (T ,F) i n

The state transition function takes a state tuple and an
environment tuple as its arguments and returns a new state
tuple.

Phase-One, Phase-Three, and Phase-Four: To complete
the specification of this level, we would write formal
descriptions of the state transitions that take place in the
first, third, and fourth phases.

Dejining se l ec t : The abstract function s e l e c t returns
a key based on the value of the state and the environment. In
the case of the phase-level, the key is simply the phase-clock.
kdef G e t Phaseclock

(r e g , psw, pc , m e m , i vec , i r , mar,
mbr, mpc, a l a t c h , b l a t ch , i r eq - f f ,
i ack- f f , mir , urom, c l k)

1:int-e) = c l k .
Dejining key: Key transforms a key into a number. Our

clock is represented by a boolean 2-tuple, so the tuple function
bt2-vdl serves as the representation for key.

Defining substate: The state is identical at the phase-
level and the electronic block model; therefore, the sub-
s t a t e function is represented using the built-in identity
function, I.

Defining subenv: The environment is identical at the
phase-level and the electronic block model; therefore, the
subenv function is represented using the built-in identity
function, I.

Defining Impl, count, and begin: The implementation
for the phase-level is the electronic block model. The specifi-
cation of the electronic block model is a structural description;
fully expanded, it is about 6 pages long. The top-level of the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. I , JANUARY 1995

specification is a predicate called EBM operating over a state
and environment stream.

The definitions of count and begin are trivial since
there is no temporal abstraction between the electronic block
model and the phase-level. They describe a single phase-
clock, so GetEBMClock returns an arbitrary constant value,
EBM-Beg in .

Defining the Phase-Level Interpreter: Table VI shows the
functions used to instantiate the abstract representation. The
result is a specification of the phase-level interpreter:
I- Phase-Int s e =

(V t .
s (t + 1) = I F U N C (FL (ht2-val

(GetPhaseClock (s t) (e t)))
I (F ,F) ,phase-one;

(F , T) ,phase-two;
(T , F) ,phase- three;
(T , T) ,phase-four 1) (s t) (e t)) .

This theorem defines the phase-level interpreter by relating
the state at time t + 1 to the state and environment at time t.
The relationship is based on the nth member of the instruction
list where n is calculated from the phase-level clock.

VII. VERIFYING AVM- I
In this section, we instantiate the generic interpreter model

to provide the desired correctness lemmas for each level of
the AVM- 1 specification. These correctness lemmas are later
combined to provide an overall correctness theorem for AVM-
1.

For each level, we carryout the following steps.
1) Instantiate the generic correctness predicate so that it can

be used in the proofs of the theory obligations.
2) Prove the three theory obligations for the instantiation.
3) Using the proofs of the theory obligations, instantiate

the correctness result from the generic model.

A. Verifying the Architectural Level

The goal of the architectural level verification is to show
that the micro-level implements the architectural level. At
this level, the micro-level specification becomes the imple-
mentation and the architectural level interpreter is used as the
abstract behavioral model. We want to show that under some
small set of assumptions, the micro-level specification implies
the architectural level specification.

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

WINDLEY: FORMAL MODELING AND VERIFICATION OF MICROPROCESSORS 61

The Instruction Correctness Predicate: The correctness
predicate represents one of the most important parts of the
theory obligations. The main advantage of using the generic
interpreter model is that once the specification is completed,
the theorem prover can instantiate the generic model to
produce the goals that need to be established to prove the
final result. This is much better than determining these goals
by trial and error.

The instruction correctness predicate, once instantiated, says
exactly what must be proven about the instructions at the ar-
chitectural level to meet the theory obligations and instantiate
the generic model.
A r c h-Ins t -Correc t =

F A r c h - I n s t - C o r r e c t s ’ e ’ p =
M i c r o - I n t s ‘ e ‘ +
(V t .

(Opcode (M i c r o - S u b s t a t e (s ’ t)) (e ’ t)

(G e t M P C (s ’ t) (e ’ t) = F , E , F , F , F , F) +
KEY p) A

(3 c .
Next(A t ’ . G e t M P C (s ’ t ’) (e ‘ t’)

(IFUNC p (M i c r o - S u b s t a t e (s‘ t))

M i c r o - S u b s t a t e (~ ’ (t + c)))))

It is interesting to compare this version of the instruction
correctness predicate with the generic one given in Section
IV-C. The structure is the same, but the names have changed.

The Theory Obligations: We are required to meet three
theory obligations before we can instantiate the generic model.

1) We must show that each instruction in the archi-
tectural level specification is correct with respect
to the micro-level specification. Specifically, we
must prove that the instruction correctness predicate,
A r c h - I n s t - C o r r e c t , iS true for every instruction in
the architectural level specification.

= F , F , F , F , F , F) (t , t + C) A

(e ‘ t) =

2) We must show that every key selects an instruction.
3) We must show that every key selects the right instruc-

The Instruction Correctness Lemma: We can prove the in-
struction correctness lemma using symbolic execution for each
instruction at the architectural level. For example, here is the
instruction correctness lemma for the first instruction in the
list, JMP.
k A r c h - Ins t - C o r r ec t

tion.

(A t . reg t , p s w t , pc t , m e m t ,

(A t . i n t - e t)
(I N L (F , F , F , F , F) , JMP) .

ivec t , i r t , m a r t , mbr t , mpc t)

Because of the regularity imposed by the generic interpreter
model, we are able to develop a single HOL tactic that proves
the instruction correctness lemma for every instruction in the
architectural level instruction set.This relieves much of the
burden of proving the instruction correctness lemma. Using
the individual results for each instruction in the list, we can
prove the instruction correctness lemma for the architectural
level.

Arch-Int-CORRECT-LEMMA =:
k- EVERY (Arch-Inst-Correct

(A t . reg t , p s w t , pc t ,
m e m t , ivec t, i r t ,
m a r t , m b r t , mpc t)

(A t . i n t - e t))
a r c h - i n s t r u c t i o n s .

The Length Lemma: In the length lemma at the architec-
tural level, the opcode variable, o p c , has the type : b t 5 +one.
The representation of the keys as coproducts makes the proof
of the length lemma slightly more interesting than the proof of
the length lemma for the other levels, but it is not substantially
more difficult.
A r c h - I n t -LENGTH-LEMMA =

k- t/ opc . Opc-Val opc < (LENGTH
a rch - ins t ruc t ions) .

The Order Lemma: The proof of the order lemma for the
architectural level is also different from the proof of the order
lemma for the other levels due to the coproduct representation
of the keys. Again, the result is not difficult to prove.
A r c h - I n t -0RDER-LEMMA =

k- V OPC . OPC = (KEY (EL (Opc-Val opt)
a r c h - i n s t r u c t i o n s)) .

Instantiating the Correctness Theorem: After the theory
obligations for the architectural level have been established,
we can instantiate the generic model to provide a correctness
result for this level. After the instantiation is complete, some
minor rewriting and beta reduction lead to the final result for
this level:
ARCH-LEVEL-CORRECT-LEMMA =
k M i c r o - I n t

(A t . (r eg t , p s w t , p c t ,mern t ,

(A t . (in t - e t)) A
ivec t , i r t , m a r t , m b r t , m p c t))

(3 t . mpc t = F , F , F , F , F , F) +
A r c h - I n t

((A t . (r eg t , p s w t , p c t , m e m t ,
ivec t)) o

(T e m p A b s (A t . mpc t
= F , F , F , F , F , F)))

((A t . (i n t - e t)) o (T e m p A b s (A t .
mpc t = F , F , F , F , F , F))) .

According to this result, that the architectural level inter-
preter is correct with respect to the micro-level interpreter.
The expression
(T e m p A b s (A t . mpc t = F , F , F , F , F , F))

architectural level to time at the micro-level.
is the temporal abstraction function that relates time at the

B. Verifiing the Micro-Level

We do not present the verification of the micro-level because
of space constriants. The verification of the micro-level is
much like the verification of the architectural level. The
following theorem is the final result of the verification:
MICRO-LEVEL-CORRECT-LEMMA =
t P h a s e - I n t (A t . (r e g t,psw t,pc t,mem t,

ivec t , i r t , m a r t ,

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

68 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 1, JANUARY 1995

mbr t,mpc t, alatch t,
blatch t, ires-ff t,
iack-ff t,mir t,
micro-rom,clk t))

(A t . (int-e t)) A
(3 t. . clk t = F,F) 3

Micro-Int
((A t . (reg t,psw t,pc t,mem t,ivec t ,

ir t,mar t,mbr t,mpc t)) o
(TempAbs(A t . clk t = F,F)))

((A t . (int-e t)) o
(TempAbs(A t . clk t = F,F))) .

(A t . (reg t,psw t,pc t,mem t,ivec t,ir t,

in the above theorem models a state vector that is a function
of time, or in other words, a state stream. This expression
represents a data abstraction of the phase-level state stream
and is not a micro-level state stream until it is composed with
the temporal abstraction function
(TempAbs(X t . clk t = F,F))

The lambda expression

mar t,mbr t,mpc t))

that maps micro-level time onto phase-level time.
The correctness result also contains the following assump-

tion:
(3 t . (:lk t = F,F) .

This assumption must be met for the correctness result to
be valid. That is, unless we can guarantee that at some time
the clock will be at the beginning of its cycle, we cannot say
that the computer will function correctly. Of course, we can
guarantee this using a reset button.

C. Verifvirig the Phase-Level

The verification of the phase-level differs from the veri-
fication of the architectural level and the micro-level in a
significant way: the implementation is a structural represen-
tation of the electronic block model rather than a behavioral
representation. This makes some steps in the verification less
uniform, but the overall process is essentially the same.

The Instruction Correctness Predicate: Each of the phase-
level instructions must satisfy the instruction correctness pred-
icate if we are to meet the theory obligations. We use the same
procedure that produced the phase-level interpreter specifica-
tion to instantiate the generic correctness predicate.
Phase-Int -Ins t-Correct =
FPhase-Int-Inst-Correct s f e‘ p =
EBM :s’ e’ +
(V t .
(GezPhaseClock (s‘ t)(e’ t) = KEY p) A
(GetEBMClock (s’ t) (e‘ t) = EBM-Start)

Next(A t’ . GetEBMClock (s’ t‘)
(e’ t’) = EBM-Start) (t,t + c) A
(IFUNC p (s’ t) (e’ t) = s‘(t + c)))

(3 (I‘ ’

Because the instruction correctness predicate is derived from
the specification rather than being developed in an ad hoc
manner, it has the same form as the instruction correctness
predicate for the architectural level.

The Thmry Obligations: Just as at the architectural level,
the theory obligations to be proven are automatically derived
from the abstract theory obligations by HOL.

The Instruction Correctness Lemma: To establish the first
theory obligation for the generic interpreter model, we first
prove that the phase-level instruction correctness predicate
applies to each of the phases and then use these results to
establish that the predicate applies to every instruction.

The following theorem holds that the instruction correctness
predicate applied to the first instruction, phds e-one, is a
tautology.

k Phase - I n t -1 n s t -Cor r e c t
PHASE -0 VE -EBM-L EMMA =

(A t . reg t - , p s w t,pc t,mem t,ivec t,ir
t, mar t,mbr t,mpc t,

alatch t,blatch t, ireq-ff t,
iack-ff t,mir t,urom,clk t))

(A t . (ireq-e t))
((F,F) ,phase-one) .

We also have to prove a similar lemma about each of the
other instructions in the phase-level specification. The proofs
in each case are long but fairly straightforward. They are not,
however, uniform and each must be dealt with individually.

After we have shown that the instruction correctness pred-
icate is true for each of the instructions, we can show that
it is true for every instruction. This satisfies the first theory
obligation
Phase-Int-Correct-LEMMA =
EVERY

(Phase-Int-Inst-Correct
(A t . (reg t,psw t,pc t,mem t,
ivec t,ir t,mar t,mbr t, mpc t,

alatch t, blatch t - , ireq-f f t ,
iack-ff t, nir t,urom,(-lk t))

(A t . (ireq-e t)))
[(F,F) ,phase-one; (F,T) ,phase-two; (T,F),
phase-three; (T,T) ,phase-four1 .

The Length Lemma: The second theory obligation is easy
to show. The theorem holds that the numeric value of a boolean
2-tuple is always less than the length of a four-element list.
Phase-Int -LENGTH-LEMMA =
t- V clk bt2-val clk <
(LENGTH [(F,F), phase-one; (F,T) ,phase-two;

The Order Lemma: The third theory obligation holds that
the numeric value of the first part of the pair denoting an
instruction is the index of that instruction in the instruction
list (i.e., the list is correctly ordered). This lemma is also quite
easy to show by case analysis.
Phase-Int-ORDER-LEMMA =

KEY (EL (bt2-val clk)

(T,F),phase-three;(T,T), phase-four]).

I- V clk . clk =

[(F,F),phase-one; (F,T),phase-two;
(T,F) ,phase-three; (T,T’) ,phase-four]) .

Instantiating the Correctness Theorem: Having proven the
theory obligations, we can now instantiate the generic inter-

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

WINDLEY: FORMAL MODELING AND VERIFICATION OF MICROPROCESSORS 69

preter model. The result of the instantiation can be simplified
through minor rewriting and beta reduction.

FEBM (A t .
PHASE-LEVEL-CORRECT-LEMMA =

(reg t,psw t,pc t,mem t,ivec t,ir t,
mar t,mbr t,mpc t,alatch t,
blatch t, ireq-f f t, iack-f f t , mir t ,
urom, clk t))

(A t . (ireq-e t)) +
Phase-Int

(A t .
(reg t,psw t,pc t,mem t,ivec t,ir t,
mar t,mbr t,mpc t,alatch t,
blatch t , ireq-f f t , iack-f f t , mir t ,
urom, clk t))

(A t . (ireq-e t)).

The result states that the electronic block model implies
the phase-level for the concrete state and environment in our
model.

D. AVM-I is Correct

We have successfully instantiated the generic interpreter
theory for each of the levels in our hierarchical decomposition.

We establish

in stages by showing

We will use the correctness results from each of the levels and
Modus Ponens to prove the correctness result for the entire
CPU.
AVM-CORRECT =
I- let micro-abs = TempAbs

(A t . clk t = F,F) in
let abs = micro-abs o

(TempAbs (A t . (mpc o
micro-abs)t = F,F,F,F,F,F)) in

EBM (A t

(A t
(3 t
(3 t

Arc h-I nt

. (reg t,psw t,pc t,mem t,
ivec t,ir t,mar t,mbr t,mpc t,
alatch t, blatch t, ireq-f f t,
iack-ff t,mir t,micro-rom,clk t))
(ireq-e t)) A

(mpc o micro-abs) t =
clk t = F,F) A

F,F,F,F,F,F) *
((A t . (reg t,psw t,pc t,

mem t, ivec t)) o abs)
((A t . (ireq-e t)) o abs)).

This result is the same result that we would have proven
had we not used hierarchical decomposition and the generic
interpreter model. However, the process by which we arrived
at this result was methodical-the generic interpreter theory
guided the specification and verification at every level.

VIII. OBSERVATIONS

Having completed the formal specification and verification
of AVM- 1, we make several observations.

We have shown how a variety of architectural and
organizational features can be modeled using the generic
interpreter model. One should not assume that we claim
that every architectural feature will map onto the model
presented in Section IV. Indeed, many may not.
What does this say, then, for the utility of abstract
theories? Certainly, many interesting features, such as
interrupts, can be mapped onto the model given in this
paper. Furthermore, formalizing new models is not a
difficult process. We expect that our models will change
and new models will be developed to suit new features.
The major utility of abstract theories-structuring the
proof-is not diminished.

We are currently exploring the application of the
generic interpreter theory to the verification of pipelined
architectures with feedback. In [23]. we show why
the model presented in this paper will not work for
pipelined microprocessors, describe what it means for a
microprocessor with an instruction pipeline to be correct,
and provide an example verification of a microprocessor
with a 5-stage instruction pipeline.
Each of the interpreter levels uses a different concept
of key. The phase-level, for example, uses the value of
a polyphase clock as the instruction key. The micro-
level, on the other hand, uses location in memory, in
our representation, as the key to select an instruction.
The architectural level uses an opcode as the key. Thus
a program that is thousands of instructions long at the
micro-level implies that there are thousands of instruc-
tions in the model. A program that is thousands of lines
long at the architectural level would still only use the
30 instructions given here. For longer microprograms, a
different representation of keys would have to be chosen.
Another interesting point concerning keys is their use
at the architectural level to distinguish between user
instructions and pseudoinstructions. When specifying an
interpreter, it is important to be flexible about the concept
of an instruction. We would not have been able to model
the external interrupts using the generic interpreter model
if we had not been willing to think of it as just another
instruction that is selected using an environment signal
instead of the program counter.
The use of coproducts to specify the user instructions
and pseudoinstruction keys also points out the utility
of having a specification language that is powerful and
expressive. Because HOL had coproducts, we were easily
able to specify the distinction between these two types of
instructions while continuing to use the opcode to select
user instructions.
In order to deal with detailed timing issues, gate-delays
would have to be built into the models. There is nothing
to keep us from building specifications that model gate-
delay; however, the models would be more complex and
the verification more difficult.

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

70 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. I . JANUARY 1995

We believe that a better approach is to use heterogeneous
verification environments that make use of several tools
such as standard simulators, symbolic simulators, and
theorem-proving tools. We are currently working on the
integration of the HOL theorem-proving environment
and a set of VLSI design tools including a low-level
simulator [7]. Jeffrey Joyce and Carl Seger are working
on integrating the HOL theorem proving environment and
the Voss symbolic simulator [13]. Other work involving
the integration of BDD’s, model checking and other
theorem-proving tools is underway as well.

The combination of theorem-proving with other means
of verifying design correctness provides a way to use
the nght tool for the right job. Symbolic simulation,
model checking, and BDD’s are most useful at less
abstract levels of the system design (BDD specifications,
for example, are given in terms of boolean formulae)
and theorem provers are most useful at more abstract
levels of the system design (reasoning about mathematical
operations, for example).
One of the merits of an abstract specification can be
clearly seen in the phase-level specification. The interrupt
request environment signal, ireq-e, is latched into the
interrupt flip-flop in the datapath during the first phase.
The value of the flip-flop is not used until the fourth phase,
when its contents are used by the control unit to calculate
the new contents for the microprogram counter. One could
legitimately ask why the line is latched so early. The
point of this discussion is not to debate that issue, but
to point out that the phase-level specification is a useful
tool for exploring these kinds of design issues. The circuit
diagram and specification of the electronic book model
contain this information, but it is more difficult to extract.
Each level in the decomposition hierarchy corresponds to
a real level in the microprocessor. We could introduce
levels that do not correspond to these real levels. For
example, we might add an additional level of abstraction
between the micro-level and phase-level to reduce the
size of the instruction set that we have to use at the
micro-level. This is an area that needs further exploration.
The proof of the instruction correctness lemma was
done using one tactic at the architectural level and an-
other tactic at the micro-level. These tactics both operate
through symbolic execution. Because of the great regu-
larity imposed on the proofs of correctness by the generic
interpreter theory, it should be possible to write a tactic
that solves the instruction correctness lemma for any
instantiation (provided that the implementation was an
interpreter). This would be an important step, since the
instruction correctness lemma represents the greatest part
of the effort involved in instantiating the theory.

We can also make some observations regarding the actual

It took a person who was intimately familiar with the
HOL theorem prover and experienced in hardware specifi-
cation and verification about 2 person-months to complete
the specification and verification of AVM-1. One unex-

proof process.

E.)
(LL3
8 (Ie

&3 &
Fig. 6. The theory hierarchy for the proof of AVM-1.

pected observation is that most of that time was spent on
the specification. The verification was tedious at times,
yet relatively straightforward. Specification seems to be
the difficult task.
Writing a correct specification of the total functionality of
a large system is usually an iterative process. One writes
the specification in pieces, performs some verification,
and then uses the feedback from the verification to
extend and correct the specification. Once this process is
completed and the specification IS right, the verification
of that fact is relatively simple. This IS just another
way of saying that the final result is not what is of
most importance; rather, the process is what is impor-
tant.

Since writing the specification is the most difficult part,
we choose to use a theorem prover that provides a more
expressive specification language, rather than one that
provides more automation for the proof process. Using a
logic that forces the specification into unnatural mappings
onto unfamiliar concepts only increases the conceptual
burden on the verifier.

As a result of this observation, we question the com-
parison of various theorem-proving environments as be-
ing easier to use than others, particularly when the
comparisons are based on redoing a completed proof.
Once the proof of correctness has been completed in one
theorem proving environment, the process of reverifying
it in another should be easy!

The proof for AVM-1 contains more than 25 theories.
Fig. 6 shows how the main theories of the proof of AVM-
1 are related. This hierarchy shows A m as the child
theory of a long ancestry that follows the hierarchical
decomposition discussed in the body of this paper. The
picture is not complete; many theories are not shown. For
example, a theory containing auxiliary definitions is the
ancestor of almost every theory in the proof. A complete
text of the proof is contained in [191.
Table VI1 presents the run-times for the various theories
in the proof on a SPARCStation with 16 megabytes of
memory. The times are CPU seconds. The table also gives
the number of primitive inferences required to run the
corresponding ML script in HOL. We were using version

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

WINDLEY: FORMAL MODELING AND VERIFICATION OF MICROPROCESSORS 71

TABLE VI1
SCRIIT RUN-TIMES ON A SPARCSTATION WITH 16 M OF MEMORY

I mkgen-alu.ml I 8038.4 I 101155 I
defalu.ml 70815
defshift .ml 129.0
defselect .ml
def-block.ml 1316.0 14738
mkphase.ml 12818.4 355161

mkavm.ml I 790.9 I 10031
208029.1 I 5167063

Even so, this detail must be manipulated to complete
the proof.
Temporal abstraction issues are handled completely
within the generic model. This frees the user of the
model from proving theorems about the temporal
abstraction; it is only done once-when the model
is built.
Similarly, data abstraction between the state and en-
vironment streams at the two levels in the model is
clearly defined and consistently performed. The user’s
contributions are to define the abstractions, the model
uses the abstractions to effect the proof.
The abstract proof can be instantiated which allows the
theorems to be reused and saves the effort required to
reverify them.

[I1

[*I 1.11 of HOL, which was built using the Austin Kyoto
Common Lisp compiler.
The total time to run the proof was 208 029 CPU seconds,
or nearly 58 CPU hours. The proof took almost a week
of elapsed time because the core images were quite large
(as high as 29 megabytes) and caused the operating
system to thrash when garbage collecting (due to a bug
in the memory management unit on the original SPARC
Station).

[3 I

[41

[51

[61

[71

181
IX. CONCLUSION

This paper has shown that the verification of realistic
microprocessors can be made practical by use of a model of
generic interpreters. The correctness theorem, definitions, and
abstractions that make up the model are important, for several
reasons. 1101

1) The model shows exactly what is required to verify that
an interpreter is correct. No superAuous detail clutters 1111

121
up the definitions and theorems.

2) The abstract proof is easier than the specific proof.
In proving theorems about specific interpreters, some 131

amount of detail is always necessary for the specific , ,41
interpreter, but not meaningful in the correctness result.

191

We believe that the structure provided by the generic
interpreter model, coupled with the savings afforded by the
hierarchical decomposition strategy, make the verification of
usable microprocessors a viable engineering activity. We are
currently in the process of validating this belief by hav-
ing graduate students with only an introductory knowledge
of HOL verify microprocessors as a semester project in a
hardware verification class.

The use of a generic interpreter model for specifying
and verifying microprocessors provides a methodological ap-
proach. Making specification and verification methodological
is an important step in turning what has been primarily a
research activity into an engineering activity.

REFERENCES

Advanced Micro Devices, Bipolar Microprocessor Logic and Interface
Data Book, AMD Inc., 1983.
F. Anceau, The Architecture of Microprocessors. Reading, MA:
Addison-Wesley, 1986.
A. Camilleri, M. Gordon, and T. Melham, “Hardware verification
using higher order logic.” inFrom HDL Descriptions to Guaranteed
Correct Circuit Designs, D. Borrione, Ed. New York: Elsevier,
1987.
A. Church, “A formulation of the simple theory of types,” J. Symbolic
Logic, vol. 5, pp. 56-115, 1940.
A. Cohn, “Correctness properties of the VIPER block model: The second
level,” Tech. Rep. 134, Univ. of Cambridge Comput. Lab., May 1988.
-, ‘The notion of proof in hardware verification,” J. Automated
Reasoning. vol. 5, pp. 127-139, 1989.
J. W. Gambles and P. J. Windley, “Integrating formal verification with
CAD tool environments,” in Proc. Fourth Annu. IEEHNASA Symp. VLSI
Design, Oct. 1992, pp. 6.3.1-6.3.11.
M. J. Gordon, “HOL: A proof generating system for higher order
logic,” in VLSI Specifcarion, Verifcation, und Synthesis, G. Birtwhistle
and P. Subrahmanyam, Eds. New York: Kluwer Academic Press,
1988.
J. Herbert, “Temporal abstraction of digital designs,” in The Fusion of
Hardware Design and Verifcarion, Proceedings of the IFlP WG 10.2
lntemational Working Conference. Glasgow, Scotkind, G. Milne, Ed.
Amsterdam, The Netherlands: North-Holland, 1988.
W. A. Hunt, “The mechanical verification of a microprocessor design,”
in From HDL Descriptions to Guaranteed Correct Circuit Designs, D.
Borrione, Ed.
-, ‘‘Microprocessor design verification,” J. Automuted Reasoning,
vol. 5 , pp. 429460, 1989.
J. J. Joyce, “Multi-level verification of microprocessor-hased systems,”
Ph.D. thesis, Cambridge Univ., Dec. 1989.
J. J. Joyce and C. Seger, private communication, Univ. of British
Columbia, Oct. 1992.
M. G. H. Katevenis, Reduced Instruction S d Computer Architectures for
VLSI.

New York: Elsevier, 1987.

Cambridge, MA: MIT Press. 1985.

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. I . JANUARY 1995

[I51 T. Melham, “Abstraction mechanisms for hardware verification,” in
VLSI Specification, Verification and Synthesis, G . Birtwhistle and P.
A. Subrahmanyam, Eds. New York: Kluwer Academic Publishers,
1988.

(161 SRI Int. Comput. Sci. Lab., EHDM Specification and Verijcafion Sys-
tem: User’s Guide, Version 4.1, 1988.

[17] P. J. Windley, “The Formal verification of generic interpreters,” Ph.D.
thesis, Univ. of California. Davis, Div. of Comput. Sci., June 1990.

[18] -, “A hierarchical methodology for the verification of micropro-
grammed microprocessors,” in Proc. IEEE Symp. Security and Privacy,
May 1990, pp. 345-359.

[19] -, “The verification of AVM-1, Tech. Rep. CSE-90-21, Univ. of
California, Davis, Div. of Comput. Sci., 1990.

I201 -, “Using correctness results to verify behavioral properties of
microprocessors,” in Pmc. IEEE Comput. Assurance Con$, June 1991,

[21] -, “Abstract theories in HOL.” in Proceedings of rhe 1992 Inter-
national Worbhop on the HOL Theorem Prover and its Applications, L.
Claesen and M. J. C. Gordon, Eds. New York: North-Holland, Nov.
1992.

[22] -, “Instruction set commutivity,” in Proc. Fourfh Annu.
IEEEITVIASA Symp. VLSI Design, Oct. 1992, pp. 6.5.1-6.5.11.

pp. 99-106.

[23] P. J. Windley and M. Coe, “The formal verification of instruction
pipelines,” in Proceedings of the 1994 Conference on Theorem Provers
in Circuir Design, Lecrure Notes in Compurer Science, R. Kumar and T.
Kropf, Eds. New York: Springer-Verlag, Sept. 1994.

Phillip J. Windley received the Ph.D. degree in
computer science from the University of California,
Davis, in 1990.

He was a member of the faculty at the University
of Idaho and a member of the technical staff at the
Department of Energy’s Division of Naval Reactors.
He is an Assistant Professor with the Department
of Computer Science at Brighdm Young University,
Provo, UT, where he directs the Laboratory for
Applied Logic. His research interests center on
the use of formal methods in computer science;

particularly the specification and verification of hardware. He has taught
numerous courses on the use of higher order logic and the HOL theorem
prover in computer system verification. Dr. Windley is a member of the
Association for Computing Machinery.

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore. Restrictions apply.

