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Formal Modeling and Verification of Microprocessors 
Phillip J. Windley 

Abstruct- Formal verification has long been promised as a 
means of reducing the amount of testing required to ensure cor- 
rect VLSI devices. Verification requires at least two mathematical 
models: one that describes the structure of a computer system 
and another that models its intended behavior. These models 
are called specijkations. Verification is a mathematical analysis 
showing that the behavior follows from the structure. Formal 
verification of microprocessor designs has been quite successful. 
Indeed, several verified microprocessors have been presented in 
the literature, and one microprocessor where formal modeling 
has been applied is commercially available. These efforts were 
virtuoso performances-largely academic exercises carried out 
by experts in logic and specification. 

This paper presents a methodology for microprocessor verifica- 
tion that significantly reduces the learning curve for performing 
verification. The methodology is formalized in the HOL theorem- 
proving system. The paper includes a description of a large case 
study performed to evaluate the methodology. 

The novel aspects of this research include the use of abstract 
theories to formalize hardware models. Because our model is 
described using abstract theories, it provides a framework for 
both the specification and the verification. This framework re- 
duces the number of ad hoc modeling decisions that must be 
made to complete the verification. Another unique aspect of 
our research is the use of hierarchical abstractions to reduce 
the number of difficult lemmas in completing the verification. 
Our formalism frees the user from directly reasoning about the 
difficult aspects of modeling the hierarchy, namely the temporal 
and data abstractions. 

We believe that our formalism, coupled with case studies and 
tools, allows microprocessor verification to be done by engineers 
with relatively little experience in microprocessor specification 
or logic. We are currently testing that hypothesis by using the 
methodology to teach graduate students formal microprocessor 
modeling. 

I .  INTRODUCTION 

OMPUTERS are being used with increasing frequency C in areas in which the correct implementation of the 
computer hardware is critical. Testing has traditionally been 
used to exclude faults in computers; however, the effectiveness 
of testing is limited by the combinatorial explosion inherent in 
any testing technique. The limitations of testing, coupled with 
the ever-increasing size of VLSI devices, have led to a search 
for alternatives to testing, such as mathematical modeling and 
analysis. 
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Formal models of VLSI designs are usually called specijica- 
tions; specifications provide a concise description of the behav- 
ior of the device that can be used by design engineers, layout 
technicians, production engineers, test engineers, technical 
writers, and users. The application of symbolic mathematical 
analysis to these models is usually called verification. 

Verification is largely an exercise in demonstrating that 
a design has certain properties. The primary property that 
concems us is functional correctness; that is, showing 
that a design has an intended behavior. This paper is 
largely concemed with verifying functional correctness, 
but other work by the author has been aimed at using 
specifications to demonstrate, for example, the integrity 
of supervisory mode i n  a RISC-like microprocessor [20] 
and the correctness of rules used in instruction stream 
reordering [22]. 

Correctness verification uses at least two descriptions of 
a system: one that describes how the circuit is constructed, 
called the structural specification, and one that describes 
what the circuit is supposed to do, called the behavioral 
specijication. Correctness is shown by demonstrating through 
mathematical proof that the former implies the latter. Design 
faults are discovered as part of demonstrating correctness and 
are corrected as the verification proceeds. Thus, verification 
can be viewed as part of the design process itself, not as an ex 
post facto process that gives a seal of approval. Typically, some 
sort of mechanical proof tool is used in conjunction with the 
verification to reduce the tedium associated with manipulating 
large specifications. 

Treating microprocessor design formally can be a difficult 
task. Avra Cohn, in 161, describes her specification of VIPER’s 
EBM from informal descriptions supplied by VIPER’s design- 
ers as follows: 

VIPER’s top-level specification and its major-state level 
were both supplied in a logical language; but its block- 
level model was given partly formally and partly pictori- 
ally (as was natural). Combining these two parts required 
both ingenuity and some guesswork. The guesses were 
based on the coincidence of line names, on the names 
of bound variables in the functional detinitions, and 
on the annotations in the text of the definitions. None 
of these notational devices can be regarded as formal 
specific ation. 

This statement not only describes the difficulties of developing 
formal specifications from the kinds of informal descriptions 
commonly in use, but it also alludes to the inadequacies of 
those descriptions. After the specification is complete, verify- 
ing that the implementation meets the behavioral specification 
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is equally arduous, sometimes requiring the proof of hundreds 
of multipage theorems. 

Every microprocessor verification done to date has been a 
virtuoso performance, carried out by experts in logic, spec- 
ification, and mechanical reasoning. In contrast to this, we 
are striving to make microprocessor verification a viable tool 
for VLSI design engineers. To that end, this paper presents a 
methodology for verifying microprocessors. This methodology 
is embodied in a formalism for the HOL theorem prover, 
providing tool support for a step-by-step approach to system 
verification. In addition, we have produced several case studies 
and are working on additional examples of verified systems 
for use in instructing engineers in microprocessor verification. 
The latter part of this paper presents a case study of the 
specification and verification of a microprocessor using our 
methodology. 

Organizcition of the Paper: This paper consists of two 
parts. In the first part, Section I1 presenrs a brief introduction 
to the HOL theorem proving system, Section 111 contains a 
mathematical model of interpreters, and Section IV contains 
a formalization of that model in the HOL theorem-proving 
system. 

The second part of the paper demonstrates the use of 
the model in a case study involving the specification and 
verification of a microprocessor called AVM-1. Section 5 
presents an introduction to AVM-1, Section VI contains the 
hierarchical specification of AVM-I in HOL, Section VI1 
presents the verification of AVM-I , and Section VI11 presents 
our observations about the case study. 

11. A BRIEF INTRODUCTION TO HOL 

To ensure the accuracy of our specifications and proofs, 
we used a mechanical verification system to develop them. 
The mechanical system performs syntax and type checking 
of the specifications and prevents the proofs from containing 
logical mistakes. The HOL system was selected for this project 
because it has higher order logic, generic specifications, and 
polymorphic type constructs. These features directly affect the 
expressibility of the specification language. Furthermore, HOL 
is widely available, robust, and has a growing international 
user base. However, nothing in our work requires that the 
HOL theorem-proving system be used. 

HOL is a general theorem-proving system developed at the 
University of Cambridge [3, 81 that is based on Church’s 
theory of simple types, or higher order logic [4]. Although 
Church developed higher order logic as a foundation for 
mathematics, it can be used for reasoning about computational 
systems of all kinds. Similar to predicate logic in allowing 
quantification over variables, higher order logic also allows 
quantification over predicates and functions, thus permitting 
more general systems to be described. 

HOL is not a fully automated theorem prover, but, it is more 
than simply a proof checker; it serves a\ a proof assistant. HOL 
has several features that contribute to its use as a verification 
environment. 

Several built-in theories, including booleans, individuals, 
numbers, products, sums, lists, and trees. These theories 
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build on the five axioms that form the basis of higher 
order logic to derive a large number of theorems that 
follow from them. 
Rules of inference for higher order logic. These rules 
contain not only the eight basic rules of inference from 
higher order logic, but also a large body of derived 
inference rules that allow proofs to be done using larger 
steps. The HOL system has rules that implement the 
standard introduction and elimination rules for Predicate 
Calculus as well as specialized rules for rewriting terms. 
A large collection of tactics to support goal-directed 
proof. Included in HOL are tactics that rewrite a goal 
according to some previously proven theorem or defini- 
tion, remove unnecessary universally quantified variables 
from the front of a goal, and split equalities into two 
implicative subgoals. 
A proof management system that records the state of an 
interactive proof session. 
A metalanguage, ML, for programming and extending 
the theorem prover. Using the metalanguage, tactics can 
be combined to form more powerful tactics, new tactics 
can be written, and theorems can be aggregated to form 
new theories for later use. The metalanguage makes the 
verification system extremely flexible. 

For the most part, the notation of HOL is that of standard 
logic: V.3,A,V, etc. have their usual meanings. A few con- 
structs deserve special attention because that are used in this 
paper. 

HOL types are identified by a prefixed colon. Built- 
in types include :boo1 and :num. Function types are 
constructed using -+. HOL is polymorphic; type variables 
are indicated by a type names beginning with an asterisk. 
The HOL conditional statement, written a h I c, 
means “if a, then b, else c”. 
The HOL list containing elements a ,  b ,  c , and d is 
represented as [ a ; b ; c ; d] . A list that contains elements 
with type x has the type : (x) list, where x can be 
any valid type (including type variables since HOL is 
polymorphic). 
EL is a curried function that accepts two arguments, a 
number, n, and a list, and returns the rith member of the 
list. 
Tuples are formed using a comma. Parentheses are only 
required when the scope of the comma is ambiguous. 
The function FST returns the first member of a tuple and 
S N D  returns the second. 
The construct let v l  = expr l  and v2 = expr2 
and . . . i n  simultaneously defines local variables v l  , 
v2, etc. with values expr L ,  expr2, etc. 

111. FORMAL MICROPROCESSOR MODELING 

Numerous efforts have been made to formally model mi- 
croprocessors. The best known of these include J. Joyce’s 
Tamarack microprocessor 1121, W. Hunt’s FM8501 micro- 
processor [lo], and A. Cohn’s VIPER microprocessor [51. 
Tamarack is a simple microprocessor with only 8 instructions. 
FM850I is larger (roughly the size of a PDP-I 1 )  but has 
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not been implemented (a 32-bit version has been verified and 
implemented by Hunt et al. 11 11). Perhaps the most interesting 
of these is VIPER, since even though VIPER is signifi- 
cantly simpler than today’s general-purpose microprocessors, 
its verification provides a benchmark of the state-of-the-art in 
microprocessor verification. 

VIPER was designed by Britain’s Royal Signals and Radar 
Establishment (RSRE) at Malvem to provide a formally ver- 
ified microprocessor for use in safety critical applications; it 
is commercially available. VIPER is the first microprocessor 
intended for commercial use where formal verification was 
used. However, the verification has not been completed be- 
cause of the large number of instruction cases and the size of 
the proofs in each of the cases. This is not to say that the proof 
could not be completed, but that it could be carried out only 
at great expense. Recent work on hierarchical specification 
[ 181, coupled with the work presented here, has overcome 
the problems that faced the VIPER verification team, and 
microprocessors significantly more complicated than VIPER 
are now within the realm of formal treatment. The case study 
in Sections V-VI1 is one example. 

The specifications for the microprocessors mentioned above 
appear very different on the surface; in fact, the specification 
for FM8501 is even in a different language than the specifica- 
tions of Tamarack and VIPER. On closer inspection, however, 
we find that each of them (as well as many others) use the 
same implicit behavioral model. In general, the model uses a 
state transition system to describe the microprocessor. We call 
this model an interpreter. 

The essence of verification is to relate mathematical models 
at different levels of abstraction. The rest of this section 
gives a mathematical definition of the interpreter model and 
shows how two interpreters are related. In the discussion that 
follows, and for the rest of the paper, we speak of the “abstract 
level” and the “concrete level,” but these terms are relative; 
as we move up and down a hierarchy of interpreters, what 
we call “abstract” at one level will be termed “concrete” with 
respect to the level above it. As a matter of convention, we 
will decorate variables that represent the concrete level with 
primes. 

A. Basic Zypes 

The basic types for our model are shown in Table I. In 
addition to these basic types, we also use the following type 
constructors: product, written ( a  x 0); coproduct, (or 
sum) written ( a  + p) ;  and function, written ( ( 2  -+ 0). An 
n-tuple is indicated by (a1 x a2 x . . . x a,-1 x a,). 

B. State 
At times it is convenient to treat state as an object of type 

S, where S is uninterpreted. This allows us to treat state in 
an abstract manner, even though we may know nothing of its 
structure or content. 

Eventually, we will provide interpretations for S to model 
a specific machine. To provide such an interpretation, we 
represent state using n,-tuples. We let be the domain of 

TABLE I 
BASIC TYPES FOR INTERPRETER DEFINITION 

{true,  false} 

M N - + B  stores 

i i  i 
0 0 0 0 0 0 0 0 0  

t; t j  t ;  1; 1; t:- t; t; tio 

F F F T F T T F T  

Fig. 1 .  The function, 7, which maps time at one level to another, can be 
defined in terms of a predicate, G, which is true only when the mapping occurs. 

n-tuples representing state. These n-tuples have the type 

(a1 x a2 x . . . x an-l x a,) 

where 

Whether or not S is interpreted, we write S 5 S’ to indicate 
that S is an abstraction of S‘. When S is an abstraction of S’ 
there exists a function, S:S’ + S. The function S is called 
the state abstraction function. 

C. Time 

In general, different levels in the interpreter hierarchy have 
different views of time. A temporal abstraction function maps 
time at the abstract level to time at the concrete level [9 ] ,  
[12], 1151. Fig. 1 shows a temporal abstraction function, 3. 
The circles represent clock ticks. Notice that the number of 
clock ticks required at the concrete level to produce one clock 
tick at the abstract level is irregular. 

The temporal projection, 3, can be defined recursively 
on time. We define F in terms of a predicate, E, which is 
true whenever there is a valid abstraction from the concrete 
level to the abstract level. In a microprocessor specification, 
G is usually a predicate that indicates when the lower level 
interpreter is at the beginning of its cycle-a condition that 
is easy to test. 

The function 3 is defined recursively so that F(G.0) is 
the first time that 4 is true and F(G,(n + 1)) is the next 
time after time n when S is true. The resulting function is 
monotonically increasing. We use N to represent time. Thus, 
we define F:(N + B) x N -+ N such that 

\in m .  ( 7 ~  > m) =+ (.F(S. n )  > F(G> m))  

We refer the interested reader to the references given above 
and to 1171 for the details of the temporal abstraction function. 
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D. State Streams 

A state stream, U, is a function from time to s ta te ,~N -+ S. 
We have chosen n-tuples of booleans, bit-vectors, and stores 
to represent state. The application of a stream to some time, 
t ,  yields an n-tuple representing the state at time t. We use a 
lambda expression for our concrete representation. 

where 

t l i . a ,  E N +  ( T + B + M )  

An important part of our theory is the abstraction between 
state streams at different levels. State stream u is an abstraction 
of state stream u’ (written (u 5 u’ ) if and only if 

1) each member of the range of ’u is a state abstraction of 
some member of the range of u’, and. 

2) there is a temporal mapping from time in u to time in u’. , 
There are two distinct kinds of abstraction here: the first is a 
data abstraction; the second is a temporal abstraction. 

Using the state abstraction function, S, and the tempo- 
ral abstraction function, F, we define stream abstraction as 
follows 

Interpreters are state transition systems. An interpreter, 1, 
is a predicate defined in terms of a 3-tuple, 3. IC, C, where 
3 . K ,  and C are defined as follows. 

Let J be the set of all functions with domain (S x E) 
and codomain S. Not all functions in J are meaningful; 
the specifier’s job is to choose meaningful functions. We 
use a subset of J to represent the instruction set;‘we call 
this set 3. The functions in 3 provide a denotational 
semantics for the instructions that they represent. 
In order to uniquely identify each instruction in 3, we 
associate it with a unique key. At the abstract level, 
we take keys from the uninterpreted domain, K.  At the 
concrete level, keys can have various representations, as 
we will see in the example in Section 6. We must be 
able to choose instructions from 3 according to some 
predefined selection criteria. The selection is based on 
the current state and environment. We define K to be a 
function with domain (S x E) and codomain K. 
We define C J  to be a choice function that has domain K 
and codomain (S x E -+ S).  C z  selects the state transition 
function from J that is associated with key K. 

We define an interpreter, Z[s, e] ,  as a predicate over the state 
stream, s, and the environment stream, e. The definition of Z 
is given as 

I[.$, e] E Vt:N . st+l = N(st, e t )  
71 5 U’ E 3(S:S’ -+ S) . 3 ( F : N  -+ N )  . S o U’ o F u 

where o denotes function composition. 

E. Environments 

The environment represents the external world; it plays 
an important part in our theory. The environment is where 
interrupt requests originate, reset signals are generated, and 
so on. In our model, the environment is used only for input; 
output to the environment is assumed to be simply a function 
of the state and environment. 

At the abstract level, we treat the environment as an 
uninterpreted type. We know nothing about its structure or 
content. We denote it as E. Just as we defined S ,  the state 
abstraction function, we define an environment abstraction 
function, E ,  such that €:E’ -+ E. When we provide an 
interpretation for E ,  we represent the environment using n- 
tuples of booleans and bit-vectors. 

We perform the same kinds of abstraction on the environ- 
ment as on states. Temporal abstraction is performed as it was 
for states. We define abstraction for environment streams in 
the same manner as we defined it for state streams. Thus we 
write e 5 e‘ when e is an stream abstraction of e’ and define 
stream abstraction for environment streams as follows: 

e 5 e’ E 3(E:E’ + E) . 3 ( F : N  -+ N) . E o e’ o F = e 

F. The Interpreter Specijcation 

The preceding parts of this section have given preliminary 
definitions for concepts that are important in the mathematical 
definition of interpreters. This section presents that definition. 

where 

and 

kt = K ( s t ,  e t )  

In this equation, st (et )  is the state (environment) in the 
state (environment) stream s(e) at time t. The predicate, I, 
constrains the state of the interpreter at time t + 1 to be 
a function, N ,  of the state and environment at time t. The 
function is determined by applying the choice function, Cz, to 
the key retumed by K for the state and environement at time t .  

G. Interpreter VeriJication 

Our goal is to prove a correctness relation between the 
interpreters at different levels of a microprocessor abstraction. 
In particular, for two interpreters, 1, and It, we wish to show 
that 

L[-?,, em]  * &[se, eel 

where s,(e,) is the state (environment) stream at level m 
and se ( e t )  is the state (environment) stream at level e .  By 
definition, we require that st 5 s, and et 5 e,. 

When this implication is true, 1, is an abstraction of 2, 
and I,,, is said to implement It. 

The correctness theorem above follows from the following 
lemma: P‘ 

V j  ~ ~ . . ~ , ( s m , e , , ) ~ ( j = C z ( l c t ) )  
3 3~ 0 S m ) ( t + c )  = j ( ( s  0 S m ) t r  (E 0 e m ) t )  
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subenv 
Imp1 
count  
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:*env’+*env  
: ( t i m e ’  + * s t a t e ’ ) +  ( t i m e  -+*env J ) - + b o o l  
: * s t a t e ’ + * e n v ’  +*kev 

This lemma, which we call the instruction correctness lemma, 
states that every instruction follows from the concrete inter- 
preter, I,. Specifically, it says that for every instruction, j 
in J ,  if j is selected, then applying j to the current abstract 
state and environment, (S o s ~ ) ~  and (I o e,)t, yields the 
same abstract state that results from letting the implementing 
interpreter 1, run for c cycles. 

The instruction correctness lemma suggests a case analysis 
on the instruction set and ignores temporal abstraction, stating 
only that there exists a time in the future when the states 
correspond. This lemma plays an important role in the work 
we describe next. 

IV. A MODEL 01; INTERPRETERS IN HOL 
The similarities in past microprocessor verifications can be 

exploited to form 8 methodology for microprocessor verifi- 
cation in general. To make this information usable, we have 
formalized the microprocessor specification model in the HOL 
mechanical theorem-proving system. The formalization does 
several things. 

1) The formalization provides a step-by-step approach to 
microprocessor specification by enumerating the impor- 
tant definitions that need to be made for any micropro- 
cessor specification. 

2) Using the formalization, the verification tool can derive 
the lemmas that need to be verified from the specifica- 
tion. 

3) After these lemmas have been established, the verifi- 
cation tool can use the formalization to automatically 
derive the final result from the lemmas. 

To formalize the model developed in the last section, we use 
abstract theories. The next section discusses abstract theories 
and how they can be used to formalize mathematical models. 
The remaining sections discuss the parts of the generic model. 

A. Abstract Theories 

A theory is a set of types, definitions, constants, axioms and 
parent theories. Logics are extended by defining new theories. 
An abstract theory is parameterized so that some of the types 
and constants in the theory are undefined inside the theory 
except for their syntax and an algebraic specification of their 
semantics. Group theory provides an example of an abstract 
theory: the multiplication operator is undefined except for its 
syntax (a binary operator on an uninterpreted type) and a 
semantics given by the axioms of group theory. 

Abstract theories are useful because they provide proofs 
about abstract structures which can then be used to reason 
about specific instances of those structures. In groups, for 
example, after showing that addition over the integers satisfies 
the axioms of group theory, we can use the theorems from 
group theory to reason about addition on the integers. 

There are two key components of an abstract theory: 1 )  
the abstract representation and 2 )  the theory obligations. The 
abstract representation is a set of abstract objects and a set 
of abstract operations. The operations are unspecified; that 
is, we don’t know (inside the theory) what the objects and 
operations mean. Their partial meaning is specified through the 

TABLE I1 

FOR THE GENERIC INTERPRETER MODEL 
THE ABSTRACT FUNCTIONS AND THEIR TYPES 

Operation I Type 
i n s t r u c t i o n s  I :(*kevx(*state-t*env+*state))list 
select I : * s t a t e - - + * e n v + * k e y  
kev  I :*kev-+num 
s u b s t a t e  I : * s t a t e ’  - + * s t a t e  1 

b e g i n  1 : * k e y ’  I 

theory obligations-a set of predicates that define relationships 
among members of the abstract representation. The abstract 
theory models any structure with objects and operations that 
satisfy the predicates. 

The theory obligations axiomatize the theory. Using the 
obligations as axioms, we prove theorems of interest about the 
abstract objects and operations. The goal is to use the abstract 
theory to reason about specific objects by instantiating the 
abstract theory with a concrete representation that has been 
shown to meet the obligations. The instantiation specializes 
the abstract theorems, producing a set of theorems about 
the concrete representation. The concrete representation is an 
instance of the abstract theory and represents a member of the 
class of abstract objects that the abstract theory describes. 

HOL, the verification environment used in the research 
reported here, does not explicitly support abstract theories; 
however, HOL’s metalanguage, ML, combined with higher 
order logic, provides a framework sufficient for implementing 
abstract theories [2 11. Several specification and verification 
systems, such as EHDM [ 161, offer explicit support for abstract 
theories. 

B. The Abstract Representation 

We specify the abstract representation for the generic inter- 
preter model by defining a list of abstract types and operations. 
Table I1 shows the operations and their types. 

When compared with the mathematical description given in 
the last section, the formalization in HOI, is more operational, 
largely for efficiency reasons. As an example, we will use 
lists, rather than sets, to describe the instruction set. HOL can 
express choice on sets, but the resulting proofs are consider- 
ably more difficult than similar proofs about lists. Certainly 
the readability of specifications is an important problem; 
most microprocessor specifications are difficult enough to read 
without unneeded details. Current work by the author and 
others is addressing these notational problems. Our ultimate 
goal is specifications that are readily readable as well as 
practically verifiable. 

Before describing the abstract representation, we must em- 
phasize that the representation is abstract, and thus the types 
and operations have no definitions. The descriptions that 
follow are what we intend for the representation to mean. 
The representation is purely syntactic, however: the names 
are simply convenient mnemonics. 
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The following abstract types are used in the representation. 
: *state represents the state and corresponds to S from 
the last section. 
: *eriv represents the environment and corresponds to E 
from the last section. 
: *key is type containing all of the keys and corresponds 
to K from the last section. 

In addition to these abstract types, the representation makes 
use of several concrete types: : time, : num, and : bool. The 
1 i s t and 4 (function) type constructors are used as well. We 
add primes to the types to indicate that they represent state, 
time, etc., at the concrete rather than the abstract level of the 
hierarchy. 

The abstract representation is divided into three parts. The 
first contains those operations concerned with the interpreter 
proper. 

instructions represents the instruction set, which 
is represented by a list. Each member of the list is an 
instruction that associates a key with * a state transition 
function. Throughout the rest of the paper, we make 
use of two selector functions, KEY and IFUNC, which 
respectively select the key and state transition function 
from an instruction. instructions corresponds to 3 
from the last section. 
select represents the function that selects a key based 
on the present state and environment. select corre- 
sponds to K from the last section. 
key maps an object of type : *key to a number. This 
number is used to index the list containing the instruc- 
tions. key is used in conjunction with the EL function 
(which selects the nth member of a list) to implement C 
from the last section. 

The second part contains the abstraction functions that relate 
the state and environment at the concrete level to the state and 
environment at the abstract level. 

substate is the state abstraction function for the inter- 
preter. The domain of subst at e is primed indicating 
that it is from the concrete level. substate corresponds 
to S from the last section. 
subenv is the environment abstraction function similar 
to substate. subenv corresponds to I from the last 
section. 

Because we want to prove correctness results about the in- 
terpreter, we must have an implementation to verify the 
interpreter against. The third part of the abstract representation 
contains three functions that provide the necessary abstract 
definitions lor the implementation. 

Imp1 is the abstract implementation. We could have 
chosen to make this function more concrete and define it 
as we do the interpreter, but doing so would require that 
every implementation be an interpreter or at least have 
some pre-chosen structure. As we see in the example, the 
implementation need not be modeled as an interpreter at 
all. Thus we say nothing about it except to define its type; 
its structure and operation are completely unknown. 
count is analogous to select except it operates at 
the concrete level. Notice that it uses the state and 

environment at the concrete level to produce a key for 
the concrete level. 
begin denotes the beginning of the implementation 
clock cycle. 

The functions count and begin are used to implement the 
predicate G that indicates when time at the concrete and 
abstract levels correspond. 

We must emphasize once again that even though we have 
spent several paragraphs defining what each of the members 
of the abstract representation mean, they are truly abstract 
and have no meaning in the formal model other than the 
relationships that are defined in the theory obligations. 

C.  The Theory Obligations 

Theory obligations represent the semantics of the generic 
model. Inside the model, the only thing we know about the 
abstract representation presented in the last section is what the 
theory obligations say about it. 

To prove the correctness result, we must know something 
about the implementation. Since the implementation is a 
member of the abstract representation, nothing is known about 
it except the requirements given in the theory obligations. 
Proving that the implementation implies the interpreter def- 
inition is typically done by case analysis on the instructions; 
we show that when the conditions for an instruction’s selection 
are right, the instruction is implied by the implementation. We 
call this the instruction correctness lemma. 

The predicate INSTRUCTION-CORRECT expresses the 
conditions that we require in the instruction correctness lemma. 
INSTRUCTION-CORRECT is a good example of the kind of 
information that is captured in the generic model. Previous 
microprocessor verifications created this lemma, or one similar 
to it, in a largely adhoc manner. INSTRUCTION-CORRECT 
expresses the correctness condition for a single instruction, 
namely that under certain conditions it follows from the 
definition of the more concrete implementation. 

The complete definition of INSTRUCTION-CORRECT is 
given below: 
kdef INSTRUCTION-CORRECT s’ e’ inst = 

let s = ( A  t . (substate (s’ t))) in 
let e = ( A  t . (subenv (e’ t))) in 
let g = ( A  t . (count (s’ t) (e’ t) 

= begin)) in ( 

(Imp1 s‘ e’) 3 
( V  t: time‘. 

(select(s t) (e t)= (KEY 
(count(s’ t) (e’ t)= beg 

3 c. Next g (t,t+c) A 
((IFUNC inst) (s t) (e t 

= (s (t + c))))). 
In the definition, s ‘ ( e  ) represents the state (environment) 

stream at the more concrete level; s (e) is the state 
stream (environment) at the abstract level and is derived from 
s ‘ ( e ’  ) using the function substate (subenv) . The 
predicate g is the predicate D of Fig. 1 .  Recall that 0 was 
true whenever the states in the concrete and abstract levels 
corresponded. In our model this happens whenever the counter 

Authorized licensed use limited to: Brigham Young University. Downloaded on September 22,2022 at 23:57:29 UTC from IEEE Xplore.  Restrictions apply. 



60 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. I ,  JANUARY 1995 

in the implementation (denoted by count ( s ’ t ) ( e ’ t ) ) 
is at the beginning (denoted by begin). Recall that KEY and 
I F U N C  are the selectors for the key and instruction function 
respectively. 

INSTRUCTION-CORRECT states that the implementation 
implies that for every time, t, if inst is selected and the 
implementation’s counter is at the beginning, then there exists 
a time c cycles in the future such that applying the instruction 
to the current state yields the same state change that the 
implementation does in c cycles. 

Using INSTRUCTION-CORRECT we can define the theory 
obligations: 
EVERY (INSTRUCTION-CORRECT S ’  e ’ )  

instruct ion.; 
k:*key . (key k) < (LENGTH 
inst ruct ions ) 

V k:*key . k = (KEY (EL (key kj 
instructions) ) . 

The first obligation says that every instruction in the list 
of instructions, instruct ions, satisfies the predicate I N -  
STRXTION-CORRECT.  The second obligation says that ev- 
ery key maps to some location in the instruction list. The third 
obligation says that the abstract function key maps a key to 
the instruction with which it is associated (Le., that the list of 
instructions is ordered correctly). 

The obligations are used in two ways. First, they are 
used axiomatically in proving the correctness result; we do 
this in the next section. Second, the obligations form a set 
of necessary and sufficient conditions for showing that the 
implementation meets its specification. In the second case, they 
are the properties that users of the model must prove about an 
instantiation; we show this in Section VI. At first the theory 
obligations may seem like an additional proof burden, but in 
fact, they are typical of the lemmas that have to be proven 
in any microprocessor proof. More to the point, the theory 
obligations provide a method for deriving the proof obligations 
from the specification. Without the theory obligations, these 
lemmas would be amved at in an ad hoc fashion. 

D. The Currectness Statement 

One of the important parts of the collection of abstract the- 
orems is the definition of a generic interpreter. The definition 
is based on functions from the abstract representation. 
kdef INTERP s e = 

V t: time 
let inst = EL (key (select (s t) 

s(t + ? j  = (IFUNC inst) (s t) (e t) 
The specification of an interpreter is a predicate that relates 

the contents of the state stream at time 1 + 1 to the contents 
of the state stream at time t .  The relationship is defined using 
the functions from the abstract representation. 

The correctness result can be proven from the definition of 
the interpreter and the theory obligations as follows: 
t- let g = (A t: time(count (s’ t) (e’ t )  

(e t))) instructions in 

= begin)) in 

let :3 = (substate o s’ o abs) <ind 
15 = (subenv o e‘ o abs) ( 

(Imp1 s‘ e ‘ )  A 

I N T E 3 P  s e) 
( 3 t . g t )  =3 

The correctness statement says that if the implementation is 
valid on its state and environment streams and there is a time 
when the concrete clock is at the beginning of its cycle, then 
the interpreter is valid on its state and environment streams. 

This theorem is remarkably similar to the requirement for 
correctness developed in Section 111-G. The function abs is 
analogous to 3 and is defined in terms of a general temporal 
abstraction function TempAbs using the predicate g. 

(e ‘ ) is the state (environ- 
ment) stream in the implementation. The term ( substate 
o s’ o abs) ( (  subenv o e’ cs abs) ) is the state 
(environment) stream for the interpreter defined i n  the model. 
Thus by definition, s ( e )  is a data and temporal abstraction 
of s’ (e’) and s 5 s’ (e 5 e‘). 

There is one major difference between this correctness 
statement and the one given in Section 1114, the additional 
prerequisite that there exists at least one time when the 
predicate g is true. This requirement is a reset requirement 
that ensure liveness. The fact that it shows up here and not 
in the less formal statement is an example of the utility of 
mechanical verification: there are no hidden assumptions. 

The result in this section is a correctness statement for 
a generic interpreter model. The model defines a class of 
computational objects. The correctness result is a verification 
of every microprocessor that matches the semantics defined in 
the model; that is, once a microprocessor is shown to meet the 
theory obligations of our model, this correctness result applies 
to it without further work. 

The most important benefit of the generic model is that it 
structures the proof. A generic model states explicitly which 
definitions must be made (one for each of the members of the 
abstract representation) and which lemmas need to be proven 
about these definitions (namely, the three theory obligations). 
This is a great improvement over previous microprocessor 
verifications in which these decisions were made on an ad 
hoc basis. 

In the correctness statement, s 

V. AVM-1 

We have designed and verified a computer designated AVM- 
1 (A  Verified Micruprucrssur) to serve as a test-bed for 
microprocessor verification. For a more detailed look at the 
architecture and organization of AVM-1, see [ 171. 

Our design is the result of an attempt to build a mi- 
croprocessor that is at once verifiable. implementable, and 
usable. We have been influenced by our own experience in 
verifying microprocessors 1 1  81, the experience of others [ 5 ] ,  
[ 121, and our desire to provide hardware features in support of 
operating systems; such features include interrupts, memory 
management, and supervisory modes. AVM-1 is part of a 
verified chip set being designed and verified by the Computer 
Systems Verification Group at the University of Califomia, 
Davis. Other commnents of the svstem include a memow let abs = (?‘empubs g) Ln _ _  .- . 
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dest ’ unused 

TABLE 111 
THE PROGRAM STATUS WORD 

Last ALU result was zero 
Last ALU operation caused a carry 
Last ALU result was negative 
Last ALU operation caused a overflow 
Interrupts enabled 
In supervisory mode 

management unit, a floating point unit, an interrupt controller, 
and a direct memory access chip. 

A. The Architectural View 

A computer’s architecture is its programming interface; an 
architecture describes a language and how that language is 
interpreted. The language definition contains a specification 
of the computer’s state and the instructions available for 
manipulating that state. The architecture must also define how 
instructions are selected. 

The Registers: AVM- 1 has a load-store architecture based 
on a large register file. The register file is divided into three 
portions: 

1 )  register 0, which is read-only and contains the constant 
0; 

2) seven supervisor-mode registers, including a distin- 
guished register for use as the supervisor stack pointer 
(SSP 1. The supervisor-mode registers are read-only 
unless the CPU is in supervisor-mode (determined by 
the state of the 6th bit in the program status word); 

3) twenty-four general-purpose registers. 
Two additional registers are visible at the architectural level: 

the program counter and the program status word. The program 
counter (PC) is used to sequence the computer-it indicates 
which instruction to execute next. The program status word 
( P S W )  is used to keep track of the status of the last ALU 
operation, whether or not interrupts are enabled, and the 
privilege level of the CPU. Table 111. shows the meaning of 
the 6 bits in the program status word. 

The Instruction Set: The instruction set contains 30 instruc- 
tions. The instruction set for AVM- 1 was inspired by the RISC 
I instruction set found in Katevenis [ 141; it is a load-store 
architecture, meaning that most instructions are not, allowed 
to access memory for their operands. The instruction formats 
are simple and regular. 

The 30 programming level instructions include the follow- 
ing: 

8, 3-argument arithmetic instructions 
8, 2-argument arithmetic instructions that use a 16-bit 
immediate value 
4 instructions for loading and storing registers 
10 instructions for performing user interrupts, jumps, 
subroutine calls, and shifts. 

The Instruction Format: The instruction formats are simple 
and regular. Fig. 2 shows the four instruction formats. All the 
formats use the same opcode field. 

Format 1: 
31 25 20 15 10 n 

1 opcode dest 1 A 1 B 1 unused 1 
Format 2: 
31 25 20 15 

Fopcadeldrhl ’ A 1 imrnediate ’1 

Format 4: 
31 25 n 

1 opcodel unused I 
Fig. 2. The instruction formats in AVM-I 

In formats 1 and 2, the instruction is divided into four fields. 
The top 6 bits (31-26) give the opcode of the instructions. 
The next 5 bits (25-21) denote the destination register in most 
operations. The third field (bits 20-16) selects the register used 
as the A operand in most operations. In  format I ,  the fourth 
field is composed of bits 15-1 1 and is used to select the register 
used as the B operand. In format 2, the fourth field uses all 
of the 16 remaining bits to form an immediate number (0 to 

Format 3 is identical to formats 1 and 2, except that only 
the opcode and destination fields are used. Format 4 uses only 
the opcode field. 

There is a trade-off between instruction format complexity 
and verification effort, so in general the instruction format 
should be kept as simple as possible. A regular instruction 
format, while not essential to verification, can greatly reduce 
the amount of detail that must be dealt with in the proof. 

(216 - 1)). 

B. The Organizational View 

The implementation of AVM-I can be divided into two 
major parts: the datapath and the control unit. We will briefly 
describe the datapath and discuss the timing issues that affect 
AVM- 1’s control unit. 

The AVM- 1 Datapath: The AVM- 1 datapath is loosely 
based on the AMD 2903 bit-sliced datapath [ I ]  shown in 
Fig. 3. The signals shown at the right-hand side of the figure 
connect to the control unit. The signals on the left go to or 
come from the environment. Note that none of the clocking 
signals are shown. 

The datapath has three buses, a register file containing 32 
registers, and numerous support registers and latches. Two 
buses, A and B, are connected to the output ports on the register 
file and system registers. The C bus is connected to the input 
port on the register file and the system registers. tn addition, 
the interrupt vector is attached to the B bus through a special 
port to the interrupt controller. 

The A and B buses feed the inputs to the ALU through two 
latches. The memory buffer register can also serve as the A 
input to the ALU through a multiplexor on the ALU input. 
The ALU performs simple arithmetic and boolean operations 
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cond cn t l  

I J r - ,  

carry src 

, Shift  Function 
Shifter 

Fig. 3. The AVM-I datapath 

on the values on its A and B inputs. The results of the ALU 
operation are fed to the shifter which can perform logical and 
arithmetic shifts. The result from the shifter is put onto the C 
bus for distribution. In addition to a result, the ALU produces 
a set of status bits (negative, zero, carry, and overflow) that 
are directly saved in the program status word. 

Timing: Rather than describe the control unit of AVM-1 
in detail, we concentrate on the timing behavior since that 
is the most important feature for understanding what is to 
follow. The control unit establishes this timing. The timing of 
AVM-I is based on a four-phase clock as shown in Fig. 4. 
During the four phases, the machine performs the following 

transitions. 
In phase 1, the microinstruction register is loaded from 
the micro-rom. 
In phase 2,  the latches that feed the ALU are loaded 
from the register file and system registers. 
In phase 3, the results from the ALU and shifter are 
calculated. In addition, the MAR can be loaded from 
the PC in this phase. 
In phase 4, the result calculated in phase 3 is stored in 
the register file and system registers. 

VI. SPECIFYING AVM- 1 
Presenting the complete specification and verification of 

AVM-1 is beyond the scope of this paper. This section shows 
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t 

Calculation u 
Fig. 4. A phase diagram for AVM- 1. 

Architectural  Level 

Interpreter 

Fig. 5 .  
ofinterpreters. 

A microprocessor specification can be decomposed as a series 

parts of the specification to demonstrate how writing the 
specification is aided by the generic interpreter model. 

The specification of AVM-I is hierarchical in nature and 
uses four levels, as shown in Fig. 5. The bottom level, or 
EBM, is a structural specification; we do not present it here. By 
structural specification we mean a specification that describes 
how the major components of the microprocessor, such as the 
register file and ALU, are connected together. The structural 
specification in HOL corresponds to the netlists commonly 
used to describe circuits textually and is similar in form to the 
structural descriptions of circuits written in VHDL or other 
hardware description languages. 

The specifications above the electronic block model are 
behavioral specifications. Based on stale transition functions, 
they specify what happens without describing how it happens. 
The use of a single behavioral model (that is, the generic 
interpreter model) to describe three different levels in the 
microprocessor design may seem to be an instance of making 
the problem fit the solution; however, modeling the various 
levels of a microprocessor design in a uniform way is not 
new (see [ 2 ] ) .  Describing the behavior of each level in 
terms of state transitions modeled as instructions is quite 
natural. 
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The descriptions of the three behavioral levels all follow TABLE IV 
the pattem imposed by the generic model. The generic model 
requires that we define each of the abstract operations in the 
representation; the following abstract operations are defined in 
each section: instructions, select, key, substate, 
and subenv. The definitions of Impl, count, and begin 
are defined as part of the specification of the lower level. We 
divide each section into parts and define each of these abstract 
operations’. 

A. Specijjing the Architectural Level 

The architectural level is the topmost specification in our 
hierarchy- and is thus the most abstract. The architectural 
level specification is a formal specification of what one would 
generally find in a programmer’s manual for a micropro- 
cessor. The specification describes the effect of each of the 
architectural level instructions on the processor’s state and 
defines how the instructions are selected. The major difference 
between the formal specification of the microprocessor and 
the programmer’s manual is that the formal specification is 
unambiguous and concise. 

This section provides definitions for thefollowing compo- 
nents of the architectural level specification: the state-tuple; 
three sample architectural level instructions (JMP, ADD, and 
the external interrupt); the architecural operations correspond- 
ing to the operations in the generic interpreter theory (select, 
key, etc); and the architectural level interpreter. 

Defining the Architectural Level State: We use a state-tuple 
to describe the architectural level interpreter state. 
(reg, psw, pc, mem, ivec) 

The only state visible to the architectural level programmer 
is the register file (reg), the program status word (psw), the 
program counter (pc), the memory (mem), and the interrupt 
vector ( ivec). 

Defining the Instruction List: The complete specification 
for the architectural level is contained in [19]; here we 
highlight three sample instructions. 

The JMP Insfruction: The JMP instruction uses instruction 
format 2 (see Table 11). In the JMP instruction, the first 5-  
bit field IS used to specify the jump condition (only the least 
significant 4-bits are used), the second 5-bit field specifies the 
index of the register to use as a base address, and the 16-bit 
immediate tield is used as an offset from the base value. 

Behaviorally, the JMP instruction has a simple description. 
The value of the program status word and the contents of the 
destination field of the current instruction are used to determine 
if a jump should occur according to the conditions in Table 
IV. If so, the program counter is loaded with the sum of the A 
register and the value of the immediate field from the current 
instruction. Otherwise, the program counter is incremented. 
kd,,f J M P  (reg, psw, pc, mem, ivec) = 

let a - EL (GetSrcA pc mem) reg and 

JUMP CODES FOR THE JMP INSTRUCTION 

i = GetImm pc mem and 
d = GetDest pc mem in 

let jump-cond = JUMP-COND d psw in 
let new-pc = (jump-cond + (add(a, i ) )  

(reg, psw, new-pc, mem, ivec) 
I inc pc) in 

The function GetSrcA retrieves the value of the A source 
field from the word in memory that represents the current 
instruction (as determined by the program counter). Get Des t 
and Get Imm similarly retrieve the value of the destination and 
immediate fields from the current instruction. The definitions 
of these auxiliary functions are precise and available to readers 
of the specification. The definition of JUMP-COND describes 
the conditions under which a jump occurs and retums a 
boolean value used in the calculation of the new value for 
the program counter. 

The ADD Instruction: The ADD instruction uses instruction 
format 1. The ADD instruction adds the contents of the registers 
selected by the A and B fields in the current instruction and 
stores the result in the register selected by the destination 
field of the current instruction. In addition, the program status 
word is updated to reflect the results of the calculation, and 
the program counter is incremented. The HOL specification is 
given below: 
kdef ADD (reg, psw, pc, mem, ivec) = 

let a = EL (GetSrcA pc mem) reg and 
b = EL (GetSrcB pc mem) req and 
d = GetDest pc mem in 

let result = add (a, b) in 
let cflag = addp (a, b, result) and 

vflag = aovfl (a, b, result) and 
nflag = negp result and 
zflag = zerop result and 

ie = get-ie psw in 

’ Note that the presentation that follows is not intended to be an engineering 
document that presents the specification and analysis, but rather an expository sm = get-sm psw and 
document that shows how microprocessors can be specified and verified. An 
engineering presentation would differ considerably since the purpose of the 
document would be to demonstrate the correctness of the design rather than 
the utility of the model. result and 

let new-reg = UPDATE-REG psw d reg 
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new-psw = mk-psw (sm,  i e ,  v f l a g ,  

new-pc = i nc  pc i n  
nflag, c f l a g ,  z f l a g )  and 

(new-reg , new-psw, new-pc , mem, ivec  ) 
Clearly there is more to an add instruction than just cal- 

culating the new value and storing it in the right place, 
although that is certainly the high point. The specification 
unambiguously defines what state changes take place and 
the definitions of auxiliary functions tell precisely how the 
new state is calculated. For example, addp returns a boolean 
result, indicating whether there was carry out, aovf 1 returns a 
boolean result that is true when overflow has occurred, negp 
determines if the result is negative, and zerop determines 
whether the result was zero. Unlike some reference manuals, 
the definitions of these functions are available for inspection 
by readers of the specification. One can look at the definitions 
of these functions and know exactly ho&, for example, carry 
or overflow are calculated. 

The EINT Instruction: The E I N T  instruction describes the 
behavior of the microprocessor upon an extemal interrupt. We 
include the specification of the external interrupt in this paper 
because it has interest both in its own right and in showing 
how events not typically thought of as instructions can be 
specified in our model. 

The selection criterion for the external interrupt instruction 
distinguishes it from the other instructions specified at this 
level. Every other instruction is selected based on the value of 
the opcode portion of the word in memory pointed to by the 
program counter; the E I N T  instruction is selected whenever 
the external interrupt line in the environment is set. Because its 
selection criterion differs substantially from that of the other 
instructions (and because an assembly language programmer 
would not really consider it an instruction) we term E I N T  a 
“pseudoinstruction.” 

Every state variable in the architectural level state except 
the interrupt vector is changed in the execution of the E I N T  
instruction. The program status word is updated to enter 
supervisory mode and disable further interrupts. The contents 
of the program counter are pushed onto the supervisory stack, 
the supervisory stack pointer (SSP) is incremented, and the 
program counter is loaded with the 8 least significant bits of 
the interrupt vector. 
kdet EINT ( r e g ,  psw, pc ,  m e m ,  i v e c )  = 

l e t  cd = SSP-REG reg  and 
d = ssp-reg i n  

l e t  c f l a g  = get-cf psw and 
v f l ag  = get-vf psw and 
n f l ag  = get-nf psw and 
z f l a g  = get-zf psw and 
sm = T and 
i e  = F i n  

l e t  new-psw = 
mk-psw ( s m ,  i e ,  v f l a g ,  n f l a g ,  

c f l a g ,  z f l a g )  i n  
l e t  new-reg = UPDATE-REG new-psw d reg 

( i n c  cdj and 
new-pc = band (lower-8-bitsI i vec  ) 

and 

newmem = s t o r e  (mem, address  cd,  
pc )  i n  

(new-reg, new-psw, new-pc , newmem, 
ivec )  . 

In the specification, SSP-REG selects the SSP register from 
the register file; ssp-reg is a constant value used to avoid 
arbitrary numbers in the specification (much as one tries to 
avoid them in programming). Several other functions also bear 
explanation: band is bitwise logical conjunction, address  
coerces an n-bit word into an address, and s t o r e  updates 
a value in memory at a particular address. The constant 
lower-8 _ b i t s  is an n-bit word with integer value 256. 

The Instruction List: Before defining the instruction list and 
the selection function for the architectural level, we must 
decide on a representation for the keys. The instruction’s 
opcode seems particularly well suited to be used as the key 
since it uniquely identifies the instruction and is a natural part 
of the description of an assembly language. However, one 
instruction, EINT,  has no opcode. We could assign an unused 
opcode to E l ” ,  but this raises the issue of what to do if 
that opcode appears in a program, not to mention making the 
architectural level model unverifiable. 

We chose to represent the keys at the architectural level 
using a coproduct of boolean five-tuples ( :b t5)  and the 
type containing exactly one object ( :  one). Left injections on 
the type represent real instructions and right injections repre- 
sent pseudoinstructions. We chose boolean five-tuples because 
there were approximately 32 instructions. There is only one 
pseudoinstruction, so : one, the type with only one member, 
was the logical choice for its representation. There was nothing 
special about associating : one with the pseudoinstructions; 
if there had been more than one pseudoinstruction, another 
representation (such as boolean n-tuples) would have worked. 

We now define the architectural level instruction list. Every 
instruction uses the environment abstraction function to give it 
the proper type. The keys readily distinguish between the real 
instructions and the pseudoinstructions--clearly specifying the 
opcodes associated with each real instruction. 
t d e f  a rch- ins t ruc t ions  - 

[ ( I N L ( F , F , F , F , F )  ,JMF); 

( INL(T,F ,F ,F ,F)  ,ADD); 

( INR(one) ,  E I N T )  ; 
I .  

Dejining se l ec t :  The instruction selection function Op- 
code uses the environment and the state to determine which 
instruction to execute. 
tde, Opcode ( r e g ,  psw, pc,  m e m ,  i vec )  

( i n t - e ,  r e se t - e )  = 
( i n t - e  A (ge t - i e  psw) ) -+ 

INR(one) 1 
INL(opcode ( f e t c h  (mem, address  

If the interrupt line in the environment is high and interrupts 
are enabled, then the key associated with the external interrupt 
instruction, I N R  (one )  , is returned. Otherwise, a left injection 

P C ) ) ) .  
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of the 5-bit opcode portion of the word in memory pointed to 
by the program counter is returned. 

Dejining key: To instantiate the generic interpreter model, 
we must be able to turn a key into a number that indexes the 
instruction associated with that key in the instruction list. The 
function Opc-Val performs that task: 
t d e f  Opc-Val (x: ( b t 5  + one)  = 

(ISL x) .--) (bt5-val  (OUTL x)) 

The function determines whether its argument is a left or 
right injection and then, for a left injection, uses b t  5-val 
(which retums the integer value of a boolean 5-tuple) to return 
the value. Because there is only one possible right injection, 
we return 32 without any further work. 

Defining subs ta te :  Micro-Substate is the function 
used to transform a micro-level state-tuple into the architec- 
tural level state tuple shown above. 
t-def Micro-Substate ( r e g ,  psw, pc,  m e m ,  

I 32. 

i vec ,  i r ,  mar, mbr, m p c )  = 

( r e g ,  PSW, PC,  m e m ,  
i vec )  . 

The instruction register (ir), memory address register 
(mar), memory buffer register (mbr), and microprogram 
counter (mpc), which are all visible at the micro-level, 
are deleted from the micro-level state-tuple to produce the 
architectural level state-tuple. 

+Defining subenv: The environment is identical at the 
architectural level and the micro-level; therefore, the subenv 
function is represented using the built-in identity function, I. 

Dejining Impl, c lock ,  and begin: The definitions of 
Impl, clock, and begin are taken directly from the spec- 
ification of the micro-level. Imp1 is the definition of the 
micro-level interpreter. c lock is the microprogram counter 
and begin is the starting location for the microprogram, 
FETCHADDR.  

Dejining the Architectural Level Interpreter: In Section IV, 
we defined the generic interpreter, INTERP. The first argument 
to INTERP is the representation. The representation tuple 
contains the concrete functions that instantiate the abstract 
operations from the abstract representation. We use the def- 
initions from the previous sections to instantiate INTERP 
and produce a top-level specification of the interpreter at the 
architectural level. The instantiation is given in Table V. 
k Arch-Int s e = 

s ( t  + 1) = 
I F'UNC 
(EL (Opc-Val(0pcode (s t) ( e  t ) ) )  

(s t )  
(e t )  1 .  

( V  t . 

a rch - ins t ruc t ions )  

B. Speczfving the Micro-Level 

We do not present the details of the specification of the 
micro-level interpreter because it is similar to the architectural 
level interpreter. The final product of the specification is a def- 
inition that looks much like the definition of the architectural 
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TABLE V 
THE FUNCTIONS USED TO INSTANTIATE THE ABSTRACT REPRESENTATION OF 

THE GENERIC INTERPRETER MODEL FOR THE ARCHITECTLRAL LEVEL 

Opc-Val 
select Opcode 

level interpreter: 
t-Micro-Int s e = 

( V  t . 
s ( t  + 1) = 

IFUNC (EL (bt6-val  ( G e t M P C ( s  t )  ( e  t ) )  ) 
micro-instruct  i ons )  
(s t )  
( e  t ) )  

C. Specifiing the Phase-Level 

The phase-level model is the behavioral representation of 
AVM-1 from the standpoint of AVM-1's polyphase clock. 
AVM-1 has a 4-phase clock that describes how each microin- 
struction is executed. The term instruction does not really fit 
at this level, but the idea of a state transition function does 
and the description of the phase-level behavior by means of 
the generic interpreter model is both natural and useful. 

This section provides definitions for the following com- 
ponents of the phase-level specification: the state-tuple, one 
sample phase-level instruction (for phase two), the phase-level 
operations corresponding to the operations in the generic inter- 
preter theory (select, key, etc.), and the phase-level interpreter. 

Dejining the Phase-Level State: The state-tuple that de- 
scribes the phase-level interpreter state is shown below. 

( r e g ,  psw, pc ,  m e m ,  i vec ,  i r ,  mar, mbr, 
, mpc, a l a t c h ,  b l a t c h ,  ireq-f f ,  iack-f f ,  

mir,  urom, c l k )  

The variables correspond to the registers, flip-flops, and 
memories in the datapath shown in Fig. 3 .  

Defining the Instruction List: The operation of the phase- 
level interpreter is fairly simple. We associate each phase in the 
system clock with an instruction in the phase-level interpreter. 
The instructions define the state transitions that occur during 
each phase of the clock. This same information is available 
in the electronic block model, but is not as apparent there. 
During the four phases, the machine performs the following 
state transitions shown in Fig. 4 and described in Section V- 
B-2. The formal definitions for these phases describe in detail 
what happens in each phase. Due to space constraints, we 
present only the definition of the second phase. 

Phase-Two: During the second phase, the latches that feed 
the ALU are loaded from the register file and system registers 
according to the SrcA and SrcB fields in the microinstruction 
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Operation 
i n s t r u c t i o n s  
key 
s e l e c t  
subst a t  e 
subenv 
Impl 
count 
beain 

register. In addition, the interrupt acknowledge flip-flop is set 
if the interrupt acknowledge field is set in the microinstruction 
register. The clock is updated to select the third phase. 
l-d,fphase-two ( r e g ,  psw, pc ,  mem, ivec ,  

i r ,  mar, mbr, mpc, a l a t c h ,  

Instantiation 
list of phase instructions 
bt2-val 
GetPhaseClock 
The identity function, 1 
The identity function, 1 
EBM 
GetEBMClock 
EBMBezin 

b l a t c h ,  ireq-f f ,  i ack  
m i r ,  urom, c l k )  

( i n t - e )  = 

l e t  new-alatch = ( 
( (SrcA m i r )  = ( F , F , F ) )  --f 

( (SrcA m i r )  = ( F , F , T ) )  -+ 

({SrcA m i r )  = ( F , T , F ) )  -+ 

( E L  ( reg- len ( s r c a  i r )  

( E L  ( reg- len ( d e s t  i r )  

(SSP-REG r e g )  I 

f f ,  

r eg )  I 

r e g )  I 

( (SrcA m i r )  = ( F , T , T ) )  -+ psw I 
({SrcA m i r )  = ( T , F , F ) )  -+ (wordn 2 5 5 )  

I P C )  i n  
l e t  newhla tch  = ( 

( ;SrcB m i r )  = ( F , F ) )  -+ 

( (S rcB  m i r )  = ( F , T ) )  -i 

l e t  new-iack-ff = Iack m i r  and 

( r e g ,  psw, pc ,  m e m ,  i vec ,  i r ,  mar, mbr, 
mpc, new-alatch, new-blatch, i r e q - f f ,  
new-iack-ff, m i r ,  urom, new-clk).  

( E L  ( reg- len ( s r c b  i r ) )  r eg )  I 

( i n t - f e t c h  ivec )  1 ( i m m  i r ) )  i n  

new-clk = (T ,F)  i n  

The state transition function takes a state tuple and an 
environment tuple as its arguments and returns a new state 
tuple. 

Phase-One, Phase-Three, and Phase-Four: To complete 
the specification of this level, we would write formal 
descriptions of the state transitions that take place in the 
first, third, and fourth phases. 

Dejining se l ec t :  The abstract function s e l e c t  returns 
a key based on the value of the state and the environment. In 
the case of the phase-level, the key is simply the phase-clock. 
kdef G e t  Phaseclock 

( r e g ,  psw, pc ,  m e m ,  i vec ,  i r ,  mar, 
mbr, mpc, a l a t c h ,  b l a t ch ,  i r eq - f f ,  
i ack- f f ,  mir ,  urom, c l k )  

1:int-e) = c l k .  
Dejining key: Key transforms a key into a number. Our 

clock is represented by a boolean 2-tuple, so the tuple function 
bt2-vdl serves as the representation for key. 

Defining substate:  The state is identical at the phase- 
level and the electronic block model; therefore, the sub- 
s t a t  e function is represented using the built-in identity 
function, I. 

Defining subenv: The environment is identical at the 
phase-level and the electronic block model; therefore, the 
subenv function is represented using the built-in identity 
function, I. 

Defining Impl, count, and begin: The implementation 
for the phase-level is the electronic block model. The specifi- 
cation of the electronic block model is a structural description; 
fully expanded, it  is about 6 pages long. The top-level of the 
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specification is a predicate called EBM operating over a state 
and environment stream. 

The definitions of count and begin are trivial since 
there is no temporal abstraction between the electronic block 
model and the phase-level. They describe a single phase- 
clock, so GetEBMClock returns an arbitrary constant value, 
EBM-Beg in .  

Defining the Phase-Level Interpreter: Table VI shows the 
functions used to instantiate the abstract representation. The 
result is a specification of the phase-level interpreter: 
I- Phase-Int s e = 

( V  t . 
s ( t  + 1) = I F U N C  (FL (ht2-val 

(GetPhaseClock (s t )  ( e  t ) ) )  
I (F ,F )  ,phase-one; 

( F , T )  ,phase-two; 
( T , F )  ,phase- three;  
( T , T )  ,phase-four 1 )  (s t )  ( e  t ) ) .  

This theorem defines the phase-level interpreter by relating 
the state at time t + 1 to the state and environment at time t. 
The relationship is based on the nth member of the instruction 
list where n is calculated from the phase-level clock. 

VII. VERIFYING AVM- I 
In this section, we instantiate the generic interpreter model 

to provide the desired correctness lemmas for each level of 
the AVM- 1 specification. These correctness lemmas are later 
combined to provide an overall correctness theorem for AVM- 
1. 

For each level, we carryout the following steps. 
1 )  Instantiate the generic correctness predicate so that it can 

be used in the proofs of the theory obligations. 
2) Prove the three theory obligations for the instantiation. 
3) Using the proofs of the theory obligations, instantiate 

the correctness result from the generic model. 

A. Verifying the Architectural Level 

The goal of the architectural level verification is to show 
that the micro-level implements the architectural level. At 
this level, the micro-level specification becomes the imple- 
mentation and the architectural level interpreter is used as the 
abstract behavioral model. We want to show that under some 
small set of assumptions, the micro-level specification implies 
the architectural level specification. 
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The Instruction Correctness Predicate: The correctness 
predicate represents one of the most important parts of the 
theory obligations. The main advantage of using the generic 
interpreter model is that once the specification is completed, 
the theorem prover can instantiate the generic model to 
produce the goals that need to be established to prove the 
final result. This is much better than determining these goals 
by trial and error. 

The instruction correctness predicate, once instantiated, says 
exactly what must be proven about the instructions at the ar- 
chitectural level to meet the theory obligations and instantiate 
the generic model. 
A r c  h-Ins t -Correc t = 

F A r c h - I n s t - C o r r e c t  s ’  e ’  p = 
M i c r o - I n t  s ‘ e ‘ + 
( V  t . 

(Opcode ( M i c r o - S u b s t a t e  ( s ’  t ) )  ( e ’  t )  

( G e t M P C ( s ’  t )  ( e ’  t )  = F , E , F , F , F , F )  + 
KEY p )  A 

(3 c . 
Next(A t ’  . G e t M P C ( s ’  t ’ )  ( e ‘  t’) 

(IFUNC p ( M i c r o - S u b s t a t e  (s‘ t )  ) 

M i c r o - S u b s t a t e  ( ~ ’ ( t  + c ) )  ) ) )  

It is interesting to compare this version of the instruction 
correctness predicate with the generic one given in Section 
IV-C. The structure is the same, but the names have changed. 

The Theory Obligations: We are required to meet three 
theory obligations before we can instantiate the generic model. 

1) We must show that each instruction in the archi- 
tectural level specification is correct with respect 
to the micro-level specification. Specifically, we 
must prove that the instruction correctness predicate, 
A r c h - I n s t - C o r r e c t ,  iS true for every instruction in 
the architectural level specification. 

= F , F , F , F , F , F )  ( t , t  + C )  A 

( e ‘  t )  = 

2) We must show that every key selects an instruction. 
3) We must show that every key selects the right instruc- 

The Instruction Correctness Lemma: We can prove the in- 
struction correctness lemma using symbolic execution for each 
instruction at the architectural level. For example, here is the 
instruction correctness lemma for the first instruction in the 
list, JMP. 
k A r c h -  Ins t - C o r  r ec t 

tion. 

( A  t . reg t ,  p s w  t ,  pc t ,  m e m  t ,  

( A  t . i n t - e  t )  
( I N L ( F , F , F , F , F )  , JMP)  . 

ivec t ,  i r  t ,  m a r  t ,  mbr t ,  mpc t) 

Because of the regularity imposed by the generic interpreter 
model, we are able to develop a single HOL tactic that proves 
the instruction correctness lemma for every instruction in the 
architectural level instruction set.This relieves much of the 
burden of proving the instruction correctness lemma. Using 
the individual results for each instruction in the list, we can 
prove the instruction correctness lemma for the architectural 
level. 

Arch-Int-CORRECT-LEMMA =: 
k- EVERY (Arch-Inst-Correct 

( A  t . reg  t ,  p s w  t ,  pc t ,  
m e m  t ,  ivec t, i r  t ,  
m a r  t ,  m b r  t ,  mpc t )  

( A  t . i n t - e  t )  ) 
a r c h - i n s t r u c t  i o n s .  

The Length Lemma: In the length lemma at the architec- 
tural level, the opcode variable, o p c ,  has the type : b t  5 +one. 
The representation of the keys as coproducts makes the proof 
of the length lemma slightly more interesting than the proof of 
the length lemma for the other levels, but it is not substantially 
more difficult. 
A r c h - I n t  -LENGTH-LEMMA = 

k- t/ opc . Opc-Val  opc < (LENGTH 
a rch - ins t ruc t ions ) .  

The Order Lemma: The proof of the order lemma for the 
architectural level is also different from the proof of the order 
lemma for the other levels due to the coproduct representation 
of the keys. Again, the result is not difficult to prove. 
A r c h - I n t  -0RDER-LEMMA = 

k- V OPC . OPC = (KEY (EL (Opc-Val  opt) 
a r c h - i n s t r u c t i o n s ) )  . 

Instantiating the Correctness Theorem: After the theory 
obligations for the architectural level have been established, 
we can instantiate the generic model to provide a correctness 
result for this level. After the instantiation is complete, some 
minor rewriting and beta reduction lead to the final result for 
this level: 
ARCH-LEVEL-CORRECT-LEMMA = 
k M i c r o - I n t  

( A  t . ( r eg  t , p s w  t , p c  t ,mern  t ,  

( A  t . ( in t - e  t ) )  A 
ivec t , i r  t , m a r  t , m b r  t , m p c  t ) )  

( 3  t . mpc t = F , F , F , F , F , F )  + 
A r c h - I  n t 

( ( A  t . ( r eg  t , p s w  t , p c  t , m e m  t ,  
ivec t ) )  o 

( T e m p A b s  ( A  t . mpc t 
= F , F , F , F , F , F ) ) )  

( ( A  t . ( i n t - e  t ) )  o ( T e m p A b s ( A  t . 
mpc t = F , F , F , F , F , F ) ) ) .  

According to this result, that the architectural level inter- 
preter is correct with respect to the micro-level interpreter. 
The expression 
( T e m p A b s ( A  t . mpc t = F , F , F , F , F , F ) )  

architectural level to time at the micro-level. 
is the temporal abstraction function that relates time at the 

B. Verifiing the Micro-Level 

We do not present the verification of the micro-level because 
of space constriants. The verification of the micro-level is 
much like the verification of the architectural level. The 
following theorem is the final result of the verification: 
MICRO-LEVEL-CORRECT-LEMMA = 
t P h a s e - I n t  ( A  t . ( r e g  t,psw t,pc t,mem t, 

ivec t , i r  t , m a r  t ,  
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mbr t,mpc t, alatch t, 
blatch t, ires-ff t, 
iack-ff t,mir t, 
micro-rom,clk t)) 

( A  t . (int-e t)) A 
(3 t. . clk t = F,F) 3 

Micro-Int 
( ( A  t . (reg t,psw t,pc t,mem t,ivec t ,  

ir t,mar t,mbr t,mpc t ) )  o 
(TempAbs(A t . clk t = F,F))) 

( ( A  t . (int-e t)) o 
(TempAbs(A t . clk t = F,F))) . 

( A  t . (reg t,psw t,pc t,mem t,ivec t,ir t, 

in the above theorem models a state vector that is a function 
of time, or in other words, a state stream. This expression 
represents a data abstraction of the phase-level state stream 
and is not a micro-level state stream until it is composed with 
the temporal abstraction function 
(TempAbs(X t . clk t = F,F)) 

The lambda expression 

mar t,mbr t,mpc t)) 

that maps micro-level time onto phase-level time. 
The correctness result also contains the following assump- 

tion: 
(3 t . (:lk t = F,F) . 

This assumption must be met for the correctness result to 
be valid. That is, unless we can guarantee that at some time 
the clock will be at the beginning of its cycle, we cannot say 
that the computer will function correctly. Of course, we can 
guarantee this using a reset button. 

C. Verifvirig the Phase-Level 

The verification of the phase-level differs from the veri- 
fication of the architectural level and the micro-level in a 
significant way: the implementation is a structural represen- 
tation of the electronic block model rather than a behavioral 
representation. This makes some steps in the verification less 
uniform, but the overall process is essentially the same. 

The Instruction Correctness Predicate: Each of the phase- 
level instructions must satisfy the instruction correctness pred- 
icate if we are to meet the theory obligations. We use the same 
procedure that produced the phase-level interpreter specifica- 
tion to instantiate the generic correctness predicate. 
Phase-Int -Ins t-Correct = 
FPhase-Int-Inst-Correct s f  e‘ p = 
EBM :s’ e’ + 
( V  t . 
(GezPhaseClock (s‘ t)(e’ t) = KEY p) A 
(GetEBMClock (s’ t) (e‘ t) = EBM-Start) 

Next(A t’ . GetEBMClock (s’ t‘) 
(e’ t’) = EBM-Start) (t,t + c) A 
(IFUNC p (s’ t) (e’ t) = s‘(t + c))) 

( 3  (I‘ ’ 

Because the instruction correctness predicate is derived from 
the specification rather than being developed in an ad hoc 
manner, it has the same form as the instruction correctness 
predicate for the architectural level. 

The Thmry Obligations: Just as at the architectural level, 
the theory obligations to be proven are automatically derived 
from the abstract theory obligations by HOL. 

The Instruction Correctness Lemma: To establish the first 
theory obligation for the generic interpreter model, we first 
prove that the phase-level instruction correctness predicate 
applies to each of the phases and then use these results to 
establish that the predicate applies to every instruction. 

The following theorem holds that the instruction correctness 
predicate applied to the first instruction, phds e-one, is a 
tautology. 

k Phase - I n t -1 n s t -Cor r e c t 
PHASE -0 VE -EBM-L EMMA = 

( A  t . reg t - , p s w  t,pc t,mem t,ivec t,ir 
t, mar t,mbr t,mpc t, 

alatch t,blatch t, ireq-ff t, 
iack-ff t,mir t,urom,clk t)) 

( A  t . (ireq-e t)) 
((F,F) ,phase-one) . 

We also have to prove a similar lemma about each of the 
other instructions in the phase-level specification. The proofs 
in each case are long but fairly straightforward. They are not, 
however, uniform and each must be dealt with individually. 

After we have shown that the instruction correctness pred- 
icate is true for each of the instructions, we can show that 
it is true for every instruction. This satisfies the first theory 
obligation 
Phase-Int-Correct-LEMMA = 
EVERY 

( Phase-Int-Inst-Correct 
( A  t . (reg t,psw t,pc t,mem t, 
ivec t,ir t,mar t,mbr t, mpc t, 

alatch t, blatch t - ,  ireq-f f t , 
iack-ff t, nir t,urom,(-lk t) ) 

( A  t . (ireq-e t))) 
[ (F,F) ,phase-one; (F,T) ,phase-two; (T,F), 
phase-three; (T,T) ,phase-four1 . 

The Length Lemma: The second theory obligation is easy 
to show. The theorem holds that the numeric value of a boolean 
2-tuple is always less than the length of a four-element list. 
Phase-Int -LENGTH-LEMMA = 
t- V clk bt2-val clk < 
(LENGTH [ (F,F), phase-one; (F,T) ,phase-two; 

The Order Lemma: The third theory obligation holds that 
the numeric value of the first part of the pair denoting an 
instruction is the index of that instruction in the instruction 
list (i.e., the list is correctly ordered). This lemma is also quite 
easy to show by case analysis. 
Phase-Int-ORDER-LEMMA = 

KEY (EL (bt2-val clk) 

(T,F),phase-three;(T,T), phase-four]). 

I- V clk . clk = 

[(F,F),phase-one; (F,T),phase-two; 
(T,F) ,phase-three; (T,T’) ,phase-four] ) . 

Instantiating the Correctness Theorem: Having proven the 
theory obligations, we can now instantiate the generic inter- 
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preter model. The result of the instantiation can be simplified 
through minor rewriting and beta reduction. 

FEBM ( A  t . 
PHASE-LEVEL-CORRECT-LEMMA = 

(reg t,psw t,pc t,mem t,ivec t,ir t, 
mar t,mbr t,mpc t,alatch t, 
blatch t, ireq-f f t, iack-f f t , mir t , 
urom, clk t) ) 

(A t . (ireq-e t)) + 
Phase-Int 

( A  t . 
(reg t,psw t,pc t,mem t,ivec t,ir t, 
mar t,mbr t,mpc t,alatch t, 
blatch t , ireq-f f t , iack-f f t , mir t , 
urom, clk t) ) 

(A t . (ireq-e t)). 

The result states that the electronic block model implies 
the phase-level for the concrete state and environment in our 
model. 

D. AVM-I is Correct 

We have successfully instantiated the generic interpreter 
theory for each of the levels in our hierarchical decomposition. 

We establish 

in stages by showing 

We will use the correctness results from each of the levels and 
Modus Ponens to prove the correctness result for the entire 
CPU. 
AVM-CORRECT = 
I- let micro-abs = TempAbs 

( A  t . clk t = F,F) in 
let abs = micro-abs o 

(TempAbs ( A  t . (mpc o 
micro-abs)t = F,F,F,F,F,F)) in 

EBM ( A  t 

( A  t 
( 3  t 
( 3  t 

Arc h-I nt 

. (reg t,psw t,pc t,mem t, 
ivec t,ir t,mar t,mbr t,mpc t, 
alatch t, blatch t, ireq-f f t, 
iack-ff t,mir t,micro-rom,clk t)) 
(ireq-e t) ) A 

(mpc o micro-abs) t = 
clk t = F,F) A 

F,F,F,F,F,F) * 
((A t . (reg t,psw t,pc t, 

mem t, ivec t )  ) o abs) 
( ( A  t . (ireq-e t ) )  o abs)). 

This result is the same result that we would have proven 
had we not used hierarchical decomposition and the generic 
interpreter model. However, the process by which we arrived 
at this result was methodical-the generic interpreter theory 
guided the specification and verification at every level. 

VIII. OBSERVATIONS 

Having completed the formal specification and verification 
of AVM- 1, we make several observations. 

We have shown how a variety of architectural and 
organizational features can be modeled using the generic 
interpreter model. One should not assume that we claim 
that every architectural feature will map onto the model 
presented in Section IV. Indeed, many may not. 
What does this say, then, for the utility of abstract 
theories? Certainly, many interesting features, such as 
interrupts, can be mapped onto the model given in this 
paper. Furthermore, formalizing new models is not a 
difficult process. We expect that our models will change 
and new models will be developed to suit new features. 
The major utility of abstract theories-structuring the 
proof-is not diminished. 

We are currently exploring the application of the 
generic interpreter theory to the verification of pipelined 
architectures with feedback. In [23]. we show why 
the model presented in this paper will not work for 
pipelined microprocessors, describe what it means for a 
microprocessor with an instruction pipeline to be correct, 
and provide an example verification of a microprocessor 
with a 5-stage instruction pipeline. 
Each of the interpreter levels uses a different concept 
of key. The phase-level, for example, uses the value of 
a polyphase clock as the instruction key. The micro- 
level, on the other hand, uses location in memory, in 
our representation, as the key to select an instruction. 
The architectural level uses an opcode as the key. Thus 
a program that is thousands of instructions long at the 
micro-level implies that there are thousands of instruc- 
tions in the model. A program that is thousands of lines 
long at the architectural level would still only use the 
30 instructions given here. For longer microprograms, a 
different representation of keys would have to be chosen. 
Another interesting point concerning keys is their use 
at the architectural level to distinguish between user 
instructions and pseudoinstructions. When specifying an 
interpreter, it is important to be flexible about the concept 
of an instruction. We would not have been able to model 
the external interrupts using the generic interpreter model 
if we had not been willing to think of it as just another 
instruction that is selected using an environment signal 
instead of the program counter. 
The use of coproducts to specify the user instructions 
and pseudoinstruction keys also points out the utility 
of having a specification language that is powerful and 
expressive. Because HOL had coproducts, we were easily 
able to specify the distinction between these two types of 
instructions while continuing to use the opcode to select 
user instructions. 
In order to deal with detailed timing issues, gate-delays 
would have to be built into the models. There is nothing 
to keep us from building specifications that model gate- 
delay; however, the models would be more complex and 
the verification more difficult. 
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We believe that a better approach is to use heterogeneous 
verification environments that make use of several tools 
such as standard simulators, symbolic simulators, and 
theorem-proving tools. We are currently working on the 
integration of the HOL theorem-proving environment 
and a set of VLSI design tools including a low-level 
simulator [7]. Jeffrey Joyce and Carl Seger are working 
on integrating the HOL theorem proving environment and 
the Voss symbolic simulator [13]. Other work involving 
the integration of BDD’s, model checking and other 
theorem-proving tools is underway as well. 

The combination of theorem-proving with other means 
of verifying design correctness provides a way to use 
the nght tool for the right job. Symbolic simulation, 
model checking, and BDD’s are most useful at less 
abstract levels of the system design (BDD specifications, 
for example, are given in terms of boolean formulae) 
and theorem provers are most useful at more abstract 
levels of the system design (reasoning about mathematical 
operations, for example). 
One of the merits of an abstract specification can be 
clearly seen in the phase-level specification. The interrupt 
request environment signal, ireq-e, is latched into the 
interrupt flip-flop in the datapath during the first phase. 
The value of the flip-flop is not used until the fourth phase, 
when its contents are used by the control unit to calculate 
the new contents for the microprogram counter. One could 
legitimately ask why the line is latched so early. The 
point of this discussion is not to debate that issue, but 
to point out that the phase-level specification is a useful 
tool for exploring these kinds of design issues. The circuit 
diagram and specification of the electronic book model 
contain this information, but it is more difficult to extract. 
Each level in the decomposition hierarchy corresponds to 
a real level in the microprocessor. We could introduce 
levels that do not correspond to these real levels. For 
example, we might add an additional level of abstraction 
between the micro-level and phase-level to reduce the 
size of the instruction set that we have to use at the 
micro-level. This is an area that needs further exploration. 
The proof of the instruction correctness lemma was 
done using one tactic at the architectural level and an- 
other tactic at the micro-level. These tactics both operate 
through symbolic execution. Because of the great regu- 
larity imposed on the proofs of correctness by the generic 
interpreter theory, it should be possible to write a tactic 
that solves the instruction correctness lemma for any 
instantiation (provided that the implementation was an 
interpreter). This would be an important step, since the 
instruction correctness lemma represents the greatest part 
of the effort involved in instantiating the theory. 

We can also make some observations regarding the actual 

It took a person who was intimately familiar with the 
HOL theorem prover and experienced in hardware specifi- 
cation and verification about 2 person-months to complete 
the specification and verification of AVM-1. One unex- 

proof process. 

E.) 
(LL3 
8 (Ie 

&3 & 
Fig. 6.  The theory hierarchy for the proof of AVM-1. 

pected observation is that most of that time was spent on 
the specification. The verification was tedious at times, 
yet relatively straightforward. Specification seems to be 
the difficult task. 
Writing a correct specification of the total functionality of 
a large system is usually an iterative process. One writes 
the specification in pieces, performs some verification, 
and then uses the feedback from the verification to 
extend and correct the specification. Once this process is 
completed and the specification IS right, the verification 
of that fact is relatively simple. This IS just another 
way of saying that the final result is not what is of 
most importance; rather, the process is what is impor- 
tant. 

Since writing the specification is the most difficult part, 
we choose to use a theorem prover that provides a more 
expressive specification language, rather than one that 
provides more automation for the proof process. Using a 
logic that forces the specification into unnatural mappings 
onto unfamiliar concepts only increases the conceptual 
burden on the verifier. 

As a result of this observation, we question the com- 
parison of various theorem-proving environments as be- 
ing easier to use than others, particularly when the 
comparisons are based on redoing a completed proof. 
Once the proof of correctness has been completed in one 
theorem proving environment, the process of reverifying 
it in another should be easy! 

The proof for AVM-1 contains more than 25 theories. 
Fig. 6 shows how the main theories of the proof of AVM- 
1 are related. This hierarchy shows A m  as the child 
theory of a long ancestry that follows the hierarchical 
decomposition discussed in the body of this paper. The 
picture is not complete; many theories are not shown. For 
example, a theory containing auxiliary definitions is the 
ancestor of almost every theory in the proof. A complete 
text of the proof is contained in [ 191. 
Table VI1 presents the run-times for the various theories 
in the proof on a SPARCStation with 16 megabytes of 
memory. The times are CPU seconds. The table also gives 
the number of primitive inferences required to run the 
corresponding ML script in HOL. We were using version 
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TABLE VI1 
SCRIIT RUN-TIMES ON A SPARCSTATION WITH 16 M OF MEMORY 

I mkgen-alu.ml I 8038.4 I 101155 I 
defalu.ml 70815 
defshift .ml 129.0 
defselect .ml 
def-block.ml 1316.0 14738 
mkphase.ml 12818.4 355161 

mkavm.ml I 790.9 I 10031 
208029.1 I 5167063 

Even so, this detail must be manipulated to complete 
the proof. 
Temporal abstraction issues are handled completely 
within the generic model. This frees the user of the 
model from proving theorems about the temporal 
abstraction; it is only done once-when the model 
is built. 
Similarly, data abstraction between the state and en- 
vironment streams at the two levels in the model is 
clearly defined and consistently performed. The user’s 
contributions are to define the abstractions, the model 
uses the abstractions to effect the proof. 
The abstract proof can be instantiated which allows the 
theorems to be reused and saves the effort required to 
reverify them. 

[I1 

[*I 1.11 of HOL, which was built using the Austin Kyoto 
Common Lisp compiler. 
The total time to run the proof was 208 029 CPU seconds, 
or nearly 58 CPU hours. The proof took almost a week 
of elapsed time because the core images were quite large 
(as high as 29 megabytes) and caused the operating 
system to thrash when garbage collecting (due to a bug 
in the memory management unit on the original SPARC 
Station). 

[3 I 

[41 

[51 

[61 

[71 

181 
IX. CONCLUSION 

This paper has shown that the verification of realistic 
microprocessors can be made practical by use of a model of 
generic interpreters. The correctness theorem, definitions, and 
abstractions that make up the model are important, for several 
reasons. 1101 

1 )  The model shows exactly what is required to verify that 
an interpreter is correct. No superAuous detail clutters 1111 

121 
up the definitions and theorems. 

2) The abstract proof is easier than the specific proof. 
In proving theorems about specific interpreters, some 131 

amount of detail is always necessary for the specific , ,41 
interpreter, but not meaningful in the correctness result. 

191 

We believe that the structure provided by the generic 
interpreter model, coupled with the savings afforded by the 
hierarchical decomposition strategy, make the verification of 
usable microprocessors a viable engineering activity. We are 
currently in the process of validating this belief by hav- 
ing graduate students with only an introductory knowledge 
of HOL verify microprocessors as a semester project in a 
hardware verification class. 

The use of a generic interpreter model for specifying 
and verifying microprocessors provides a methodological ap- 
proach. Making specification and verification methodological 
is an important step in turning what has been primarily a 
research activity into an engineering activity. 
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